

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 1

The Future of SAP Ecosystems: CAP and Event-

Driven Innovation

Arun Chinnannan Balasubramanian

Verizon Communications, Basking Ridge, US

arun.chinnannanbalasubramanian@verizon.com

Abstract

The advent of hybrid cloud environments has increased the demand for scalable, resilient, and efficient

integration frameworks. This white paper explores how SAP's Cloud Application Programming (CAP)

Model and event-driven architectures can address these challenges. The white paper details a

comprehensive methodological framework for implementing CAP and EDA in SAP ecosystems,

supported by case studies, comparative analyses, and best practices. Key insights include the use of SAP

Event Mesh for asynchronous messaging, and strategies for integrating CAP. Also comparable alternatives

are discussed with its niche features and how well that fits into the ERP ecosystem.

Through this analysis, the paper highlights how SAP ecosystems can modernize their integration

landscapes, minimize complexity, and adapt to the demands of a rapidly evolving business environment.

This integration paradigm represents a strategic leap forward for organizations striving for innovation,

scalability, and long-term resilience.

Keywords: SAP CAP Model, Event-Driven Architecture, SAP Event Mesh, Hybrid Cloud, System

Integration, Scalability, Resilience, OData, Microservices, SAP BTP

Introduction

As organizations transition to hybrid cloud environments, the complexity of integrating disparate systems

grows exponentially. Ensuring seamless communication, data consistency, and system resilience becomes

a critical challenge [10]. Traditional integration methods often struggle to meet the demands of modern

enterprises, leading to performance bottlenecks, data synchronization issues, and limited scalability [3].

SAP's Cloud Application Programming (CAP) Model and event-driven architectures offer a modern

solution to these integration challenges. CAP provides a high-level framework for building enterprise-

grade applications [1], while event-driven systems enable real-time responsiveness and decoupled

interactions [5]. Together, they present a compelling approach for building resilient SAP integration

architectures.

This white paper delves into the technical intricacies of CAP and event-driven architectures, highlighting

their synergy, potential use cases, and best practices for implementation in SAP environments.

Problem Statement

In hybrid cloud environments, organizations face several challenges:

1. Complexity in System Integration: Traditional monolithic architectures struggle with the growing

number of interconnected systems and services [6]. For example, integrating an SAP ERP system with

https://www.ijlrp.com/
mailto:arun.chinnannanbalasubramanian@verizonwireless.com

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 2

a third-party CRM often involves custom adapters, middleware solutions, and significant manual

intervention, creating room for errors and delays.

2. Scalability Issues: As workloads increase, traditional integration approaches may fail to scale

efficiently [11]. Consider a retail application during Black Friday sales: a surge in orders can

overwhelm synchronous systems, leading to performance degradation or crashes.

3. Resilience Concerns: Systems must maintain operational continuity despite failures or disruptions

[13]. For instance, in a microservices architecture, the failure of an inventory service should not halt

the checkout process; a fallback mechanism should handle such failures gracefully.

4. Data Consistency: Ensuring real-time data synchronization across diverse platforms is crucial yet

challenging [9]. An example includes keeping inventory levels synchronized between an online store

and physical retail outlets in real time to avoid overselling.

Literature Review

SAP Cloud Application Programming (CAP) Model

CAP is a framework designed for developing enterprise-grade, cloud-native applications. One of the key

fundamentals of cloud native applications is that they are not monolithic, which means they are composed

by a series of microservices – each one performing a very specific task – and those microservices are

loosely-coupled - meaning they essentially do not depend on each other to achieve their outcomes[7]. Key

features include:

● Domain-Driven Design: Simplifies application development by focusing on business logic and

domain models [1]. For example, a domain model for an e-commerce application might include

entities like Product, Order, and Customer, each with attributes and relationships clearly defined using

Core Data Services (CDS).

● Built-In Integration Support: Facilitates connectivity to SAP and non-SAP systems through

preconfigured adapters [1]. For instance, CAP provides OData services that can be consumed directly

by UI5 applications or third-party systems.

● Standardized Protocols: Supports OData, REST, and messaging protocols for seamless integration

[1]. This allows for easy API consumption, such as exposing a GET /orders endpoint to retrieve order

details in JSON format.

Event-Driven Architectures

Event-driven architectures (EDAs) prioritize responsiveness and decoupling by treating events as first-

class citizens. A widely adopted method to achieve loosely coupled communication in microservices is

through event messaging. In this approach, when a service triggers an event—such as the creation or

update of an entity—it generates a message containing relevant details about the event, like the unique

identifier of the affected entity. This message is then "published" to an event message broker. The broker

acts as an intermediary, storing the message in a "message queue," where it becomes accessible to other

services that need to consume it. These consuming services process the message independently, enabling

asynchronous, decoupled workflows that enhance system scalability and flexibility[7].

Core concepts include:

● Event Producers and Consumers: Systems that generate and process events independently [5]. For

instance, a payment gateway (producer) might send a PaymentProcessed event, which is consumed by

the order management system to trigger shipment processing.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 3

● Message Brokers: Tools like SAP Event Mesh or Apache Kafka that facilitate asynchronous

communication [4]. For example, a Kafka topic inventory-updates could stream real-time stock

changes to multiple consumer applications.

● Event Streams: Enable real-time processing and analytics [11]. A practical use case is monitoring

customer purchase trends using Apache Flink to analyze clickstream data in real time.

Integration of CAP with Event-Driven Frameworks

Recent studies and implementations highlight the potential of combining CAP and EDA. For instance,

SAP Event Mesh serves as a middleware for CAP applications, enabling asynchronous communication

and improved scalability [2]. This allows a CAP-based order management system to publish events such

as OrderCreated, which can be consumed by downstream services like InventoryUpdate and

ShippingManagement.

Methodology

Architectural Design

1. Core Principles:

○ Leverage CAP for Domain Modeling and Data Services: Use SAP's CAP to define business entities

and relationships with Core Data Services (CDS). This enables streamlined creation of domain models

that are semantically rich and easily integrated with external services using OData or REST.

○ Adopt Event-Driven Patterns for Communication: Implement event-driven architecture (EDA) to

facilitate asynchronous communication between systems. SAP Business Technology Platform (BTP)

offers four different message broker services: SAP Event Mesh, SAP Event Mesh on Integration Suite,

SAP Integration Suite, Advanced Event Mesh and SAP Cloud Application Event Hub. These services

also implement the ‘CloudEvents’ specification., which makes it to a level of industry standard[7].

Further fusing into the ecosystem of cloud events across SaaS based systems. For instance, an

OrderPlaced event emitted by a sales system can trigger stock reservation in an inventory service

without direct dependencies.

○ Ensure Scalability Through Distributed Systems and Brokers: Deploy systems across distributed

infrastructures such as Kubernetes clusters, using message brokers like SAP Event Mesh and Apache

Kafka to manage high-throughput event flows and ensure reliability.

2. Integration Layers:

○ Data Layer: CAP services manage structured data, ensuring transaction integrity through SAP HANA

or other supported databases. This layer acts as the foundation for reliable data operations, handling

complex queries and maintaining referential integrity.

○ Application Layer: This layer houses business logic and event handlers. For example, when an

OrderShipped event is received, corresponding updates are made to customer notifications and

shipping logs.

○ Communication Layer: Event-driven messaging frameworks, such as SAP Event Mesh and Apache

Kafka, enable the decoupled flow of messages. They support patterns like publish/subscribe and event

streaming to ensure real-time communication between systems, improving overall responsiveness

[16].

Case study:

Fig 1, is based on the reference architecture for a Machine Vision System(IoT) in a plant or a warehouse

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 4

generating events for a business transaction like once after a QA inspection of a product is complete, an

event is triggered for further action[17].

Fig 1: Reference architecture diagram for a IoT based Machine vision system that integrates to event

sensor platforms and eventually to BTP-Event mesh. CAP leverages the further business event that

integrates to SAP on premise solution, which can be of any business suite applications. Here BTP is an

event consumer, event source is from the MVS system. Architecture provides SAP integration suite on

event mesh. [17]

SAP BTP then modelled to house the event mesh on integration suite as an architectural choice to serve

the need.[17]. Let's discuss the flow of the events which are orchestrated here.

1. An application administrator logs into SAP BTP Extension application based on Events to Business

Actions Framework via SAP Build Work Zone, advanced edition, to configure the business

rules/decisions and the business actions that needs to be triggered in the business systems.

2. An event is triggered from source systems like Microsoft Azure/AWS/Telco IoT Platform (in the case

of IoT scenario) or any other system.

3. These events are published on SAP Integration Suite, advanced Event mesh. As the processor module's

(part of the Events-to-Business-Action framework) endpoint subscribes to advanced event mesh, the

event is received.

4. Processor module (part of the Events-to-Business-Action framework) leverages the Decisions

capability of SAP Build Process Automation to derive business action (for example, if the incoming

signal from MVS a ‘known recall product’ a ‘Out to Vendor’ Transfer order creation in SAP S/4HANA

is initiated) based on certain characteristics of incoming event.

5. The defined action is triggered in SAP S/4HANA using the SAP Destination service and SAP Private

Link service setup. In case SAP S/4HANA and SAP BTP are on the same hyperscaler, communication

with SAP S/4HANA happens via SAP Private Link service.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 5

Table 1:High level overview of SAP Event Mesh and SAP Integration suite, advanced event

mesh[18].

Feature SAP Event Mesh

SAP Integration Suite, Advanced Event

Mesh

Recommended

for

SAP’s event-driven ecosystem and

around

General-purpose, including SAP

ecosystems

Target

Scenarios SAP to Everything

SAP to Everything and Everything to

Everything

Main Use

Cases Integration and Extension

Integration, Event Streaming, Event-

Driven Backbone

Interfaces

REST, JMS, AMQP, MQTT over

Websockets

REST, JMS, AMQP, MQTT, SMF over

Websockets & direct

Deployment On SAP BTP

Almost anywhere, including cloud and on-

premise

Advanced

Features

- Facilitated Connectivity to

selected SAP backends -

Integration into SAP services and

solutions

- Fully open on payloads - Supports

transactions - Supports replay of events -

Distributed Tracing Support (upcoming

charged add-on capability)

From Table 1, we can see from target scenarios why the reference architecture diagram uses the SAP

Integration suite, Advanced Event Mesh. For scenarios that are not limited to SAP heterogeneous systems

even at source. This architecture has the capability to orchestrate events from everything to everything.

Not limited to the SAP ecosystem.

Alternatives of Frameworks

1. SAP Business Technology Platform (BTP):

○ SAP BTP provides prebuilt connectors and tools like SAP Integration Suite and SAP API Management

for seamless integration. However, the customization capabilities are limited compared to CAP-based

solutions.

○ Strengths: Native integration with SAP systems, Integration Advisor for AI-based mapping

recommendations.

○ Example: A manufacturer integrates SAP S/4HANA with Salesforce for sales orders using BTP's pre-

built connectors, avoiding custom coding.

2. Apache Kafka:

○ Apache Kafka excels in handling high-throughput, low-latency event streaming, making it ideal for

real-time processing in IoT and financial applications [16].

○ Strengths: Kafka Streams API and Schema Registry ensure compatibility and reliability in processing.

The platform's scalability allows it to handle event bursts, such as during promotional campaigns.

○ Example: A bank uses Kafka to process credit card transactions in real time, detecting fraud patterns

instantly and triggering alerts [16].

3. Microsoft Azure Functions:

○ Azure Functions is a serverless solution that auto-scales based on workloads, often used in multi-cloud

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 6

environments.

○ Strengths: Integration with Azure Event Grid for routing IoT or enterprise events, Durable Functions

for long-running processes.

○ Example: A logistics company uses Azure IoT Hub with Azure Functions to monitor stock levels and

notify SAP S/4HANA of replenishment needs.

Table 2: Comparison of features and niche capability of alternatives.

Feature

CAP + Event Mesh

/ BTP integrations Apache Kafka

Microsoft Azure

Functions

SAP Native Support High Moderate Moderate

Scalability High High High

Implementation Effort Moderate High Moderate

Event Processing

Asynchronous +

Streaming High (Streaming) Moderate

Integration Ecosystem SAP and Non-SAP

Broad (Open Source

+ Custom Tools)

Azure-centric + Multi-

Cloud

As per Table 3, alternatives in the event driven architecures are considered for PESTLE strategy analysis.

Analysis deploys the idea from different considerations like political, economical, social, technological,

legal, environmental.

Table 3: PESTLE Analysis comparing the alternatives

Factor SAP BTP Apache Kafka Microsoft Azure

Functions

Political Strong support for

government and public

sector integrations;

compliance with regional

data policies like GDPR.

Neutral due to open-

source nature but

affected by data

sovereignty laws (e.g.,

GDPR).

Affected by political

regulations on cloud

services, particularly

data residency laws.

Economic Predictable subscription-

based model, but cost

escalates with heavy use.

Cost-efficient for

initial deployment but

may incur hidden

costs in operations.

Pay-as-you-go model

offers cost flexibility

for varying workloads.

Social Extensive enterprise

community and SAP

ecosystem support.

Active open-source

community fostering

innovation and

collaboration.

Backed by Microsoft’s

extensive developer

community, making it

user-friendly.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 7

Technological Native integration with

SAP tools, AI-driven

Integration Advisor.

Advanced real-time

event streaming and

processing

capabilities.

Serverless architecture

with features like

Durable Functions for

complex workflows.

Legal Adheres to GDPR,

HIPAA, and industry

regulations, making it

reliable for sensitive data.

Users must ensure

legal compliance,

particularly with

sensitive data laws.

Comprehensive

compliance with global

standards like ISO

27001, SOC 2.

Environmental SAP sustainability tools

align with corporate ESG

goals.

High resource usage

in large-scale

deployments can

impact energy

consumption.

Efficient resource usage

due to its serverless, on-

demand nature.

Table 4: PESTLE analysis chart

Conclusion

The combination of SAP's CAP Model and event-driven architectures provides a transformative approach

for building integration systems that are not only resilient but also highly scalable and adaptive. This

synergy is particularly vital in hybrid cloud environments where real-time communication and decoupling

of systems are paramount [1, 4, 16]. Below are detailed justifications for why SAP ecosystems should

adopt this combination:

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 8

● Enhanced Responsiveness to Events: By adopting an event-driven architecture, SAP ecosystems can

react immediately to critical business events, such as supply chain disruptions or customer purchase

actions. For example, when a PurchaseOrderCreated event occurs, the system can instantly trigger

inventory checks and initiate delivery workflows, reducing manual intervention and response times

[1, 16].

● Improved Scalability and Performance: Event-driven systems, combined with CAP's

microservices-oriented architecture, enable horizontal scaling. This ensures that even during high-

demand periods, such as end-of-year financial reporting or Black Friday sales, the systems can handle

increased workloads without performance degradation [4].

● Seamless Integration Across Platforms: CAP's robust support for OData, REST, and messaging

protocols ensures compatibility with both SAP-native and third-party systems. Coupled with SAP

Event Mesh, events such as OrderFulfilled can be seamlessly communicated to external systems like

CRM platforms or logistics services, ensuring end-to-end visibility [2, 16].

● Data Consistency and Reliability: CAP's built-in transactional integrity, when combined with the

reliable event delivery mechanisms of SAP Event Mesh or Apache Kafka, guarantees that data

consistency is maintained across distributed systems. This is particularly critical for financial

operations and compliance reporting [4, 16].

● Reduction in Operational Complexity: Decoupling achieved through event-driven designs allows

individual components to function independently, simplifying maintenance and updates. For instance,

the inventory management system can be updated without disrupting the order processing workflows

[2].

● Alignment with Emerging Technologies: The architecture supports seamless integration with AI/ML

frameworks for predictive analytics and decision-making, as well as blockchain for secure, auditable

event logs. This positions the SAP ecosystem as future-ready, capable of adopting innovations as they

emerge [16].

● Cost Efficiency in Resource Utilization: By leveraging CAP's lightweight runtime and the on-

demand nature of event-driven processing, organizations can optimize resource usage, significantly

reducing operational costs compared to monolithic architectures [4].

In conclusion, the integration of SAP's CAP Model with event-driven frameworks represents a strategic

leap forward for organizations looking to modernize their IT landscapes. This approach not only addresses

current challenges but also provides a robust foundation for scalability, innovation, and resilience in an

increasingly dynamic business environment.

References

1. SAP SE. (2024). Cloud Application Programming Model. Retrieved from https://cap.cloud.sap/

2. SAP SE. (2024). SAP Event Mesh Overview. Retrieved from https://help.sap.com/docs/event-

mesh/event-mesh/event-mesh-default-plan-concepts

3. Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston, MA: Addison-Wesley

Professional.

4. Apache Software Foundation. (2023). Apache Kafka Documentation. Retrieved from

https://kafka.apache.org/documentation/

5. Pivotal Software. (2018). Event-Driven Architectures. Retrieved from

https://tanzu.vmware.com/resources

https://www.ijlrp.com/
https://cap.cloud.sap/
https://cap.cloud.sap/
https://help.sap.com/viewer/product/SAP_EVENT_MESH
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://tanzu.vmware.com/resources
https://tanzu.vmware.com/resources
https://tanzu.vmware.com/resources

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25011241 Volume 6, Issue 1, January 2025 9

6. Chappell, D. A., & Hohpe, G. (2003). Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Boston, MA: Addison-Wesley Professional.

7. Ale Biagi, SAP Community. (2024). Event-Driven Multi-Tenant Architecture on SAP BTP with CAP

and SAP Event Mesh. Retrieved from https://community.sap.com/t5/technology-blogs-by-sap/event-

driven-multi-tenant-architecture-on-sap-btp-with-cap-and-sap-event/ba-p/13963064

8. Microsoft Corporation. (2023). Azure Event-Driven Architectures. Retrieved from

https://docs.microsoft.com/en-us/azure/event-grid/

9. O'Reilly Media. (2018). Designing Event-Driven Systems: Concepts and Patterns for Streaming

Services with Apache Kafka. Sebastopol, CA: O'Reilly Media.

10. Gartner. (2023). Hybrid Cloud Integration Trends. Retrieved from https://www.gartner.com/

11. Red Hat. (2022). Microservices and Event-Driven Systems. Retrieved from

https://www.redhat.com/en/resources

12. SAP Press. (2023). Extending SAP Applications with CAP. Rheinwerk Publishing.

13. IEEE. (2021). Scalability in Event-Driven Architectures. IEEE Transactions on Software

Engineering. Retrieved from https://ieeexplore.ieee.org/

14. Amazon Web Services (AWS). (2023). Event-Driven Architectures on AWS. Retrieved from

https://aws.amazon.com/event-driven-architecture/

15. OpenAPI Initiative. (2017). Designing APIs with OpenAPI. Retrieved from https://openapis.org/

16. Millalen, A. (2023). Comparing Event Hubs and Kafka. Retrieved from

https://alejandromillalen.com/en/comparing-event-hubs-and-kafka/

17. Arun Chinnannan Balasubramanian. (2023). Intelligent Return Processing: Machine Vision (MV)

with SAP BTP in Reverse Logistics. International Journal of Innovative Research in Engineering &

Multidisciplinary Physical Sciences, 11(6), 1–7. https://doi.org/10.5281/zenodo.14607738

18. Karsten Strothmann. (2022). SAPs event-based ecosystem Revisited. Retrieved from

https://community.sap.com/t5/technology-blogs-by-sap/sap-s-event-driven-ecosystem-revisited/ba-

p/13531685

https://www.ijlrp.com/
https://community.sap.com/t5/technology-blogs-by-sap/event-driven-multi-tenant-architecture-on-sap-btp-with-cap-and-sap-event/ba-p/13963064
https://community.sap.com/t5/technology-blogs-by-sap/event-driven-multi-tenant-architecture-on-sap-btp-with-cap-and-sap-event/ba-p/13963064
https://blogs.sap.com/
https://docs.microsoft.com/en-us/azure/event-grid/
https://docs.microsoft.com/en-us/azure/event-grid/
https://docs.microsoft.com/en-us/azure/event-grid/
https://www.gartner.com/
https://www.gartner.com/
https://www.redhat.com/en/resources
https://www.redhat.com/en/resources
https://www.redhat.com/en/resources
https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://openapis.org/
https://openapis.org/
https://alejandromillalen.com/en/comparing-event-hubs-and-kafka/
https://alejandromillalen.com/en/comparing-event-hubs-and-kafka/
https://alejandromillalen.com/en/comparing-event-hubs-and-kafka/
https://doi.org/10.5281/zenodo.14607738
https://community.sap.com/t5/technology-blogs-by-sap/sap-s-event-driven-ecosystem-revisited/ba-p/13531685
https://community.sap.com/t5/technology-blogs-by-sap/sap-s-event-driven-ecosystem-revisited/ba-p/13531685

