

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 1

Stream Processing Internals and Usecases

Arjun Reddy Lingala

arjunreddy.lingala@gmail.com

Abstract

Batch processing is widely used concept in data warehousing where many companies build

analytical solutions deriving insights into their systems and building new products based on the

analysis based on various aspects of the systems. The exponential growth of real-time data sources

like IoT sensors, social media has necessitated systems capable of processing unbounded data

streams with low latency, high throughput, and guaranteed correctness. Unlike batch processing,

stream process- ing engines must handle continuous data flows with dynamic arrival patterns, out-

of-order events, and variable workloads. The problem with daily batch processes is that changes in

the input are only reflected in the output a day later, which is too slow for some use cases. To

reduce the delay, we can run the processing more frequently. In the batch processing world, the

inputs and outputs of a job are files may be on distributed file system like HDFS [1] or Amazon S3

[2]. Stream processing has emerged as a critical computational model that enables real-time

ingestion, transformation, and analysis of continuous data streams. This paper presents a

comprehensive exploration of the necessity for stream processing, identifying its use cases over

batch processing and its suitability for latency-sensitive applications such as financial trading,

fraud detection, and Internet of Things (IoT) systems. We begin by establishing the fundamental

motivation behind stream processing, outlining key challenges associated with real-time data

analytics, including data velocity, system scalability, and fault tolerance. The discussion highlights

the lim- itations of traditional batch processing frameworks like Apache Hadoop and their

inability to efficiently handle continuous data flows. In contrast, we analyze how stream

processing frameworks such as Apache Kafka [3], Apache Flink [4], Apache Storm [5], and Spark

Streaming [6] address these challenges by enabling near real-time event-driven computations.

Keywords: Stream Processing, Data warehouse, Windowing, Change Data Capture, Message

Queues, Message Brokers, Kafka, Flink, Storm, Real-time

I. INTRODUCTION

The ever-growing volume of real-time data generated across industries such as finance and IoT has

exposed the limitations of traditional batch-processing models. These conventional approaches, which

process data in discrete intervals, struggle to keep up with the increasing need for instant insights, low-

latency decision-making, and high-throughput analytics. In contrast, stream processing has emerged,

allowing for continu- ous data ingestion, real-time computation, and rapid responses to events as they

occur. This shift is essential for modern applications that require immediate data-driven actions, mak-

ing stream processing an indispensable component of today’s computing. Traditional batch-processing

https://www.ijlrp.com/
mailto:arjunreddy.lingala@gmail.com

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 2

frameworks, such as Apache Hadoop, are inherently unsuitable for scenarios that demand real-time

responsiveness. They introduce delays due to their scheduled, periodic execution cycles, making them

ineffective for applications where milliseconds matter. For instance, stock market fluctuations require

immediate analysis to drive automated trading strategies, while cybersecurity systems must detect and

mitigate threats in real-time to prevent potential breaches, bank transactions fraud detection must be

detected in real-time to prevent scams. To overcome these constraints, stream processing frameworks

such as Apache Flink [4], Apache Kafka Streams [3], Apache Storm [5], and Spark Streaming [6]

have been developed to enable continuous, event-driven computations with low latency, high

availability, and fault tolerance. The proliferation of connected devices, sensors, and digital interactions

has resulted in an influx of continuous data that traditional batch processing models cannot efficiently

handle. Industries such as fraud detection, predictive maintenance, network security, and algo- rithmic

trading require immediate processing and response to data as it arrives. Modern stream processing

solutions leverage distributed computing, ensuring efficient scalability and fault tolerance while

handling vast, high-velocity data streams. Many modern applications rely on event-driven architectures

where decisions are triggered by real-time events, requiring seamless data processing pipelines that react

instantly. Stream processing frameworks are designed to integrate with existing big data architectures,

including cloud data lakes, NoSQL databases, and enterprise data pipelines, enhancing operational

efficiency.

II. STREAM PROCESSING INTERNALS

In continual processing methodology with low delays polling becomes expensive with traditional

relational databases as they are not designed for these kind of use cases. Relational databases commonly

have triggers, which can react to a change but they are very limited in what they can do and have

been somewhat of an afterthought in database design. New specialized tools like messaging systems

are developed where a producer sends a message containing the event, which is then pushed to

consumers. A direct communication channel like a Unix pipe or TCP connection between producer and

consumer would be a simple way of implementing a mes- saging system. However, most messaging

systems expand on this basic model. In particular, Unix pipes and TCP connect exactly one sender with

one recipient, whereas a messaging system allows multiple producer nodes to send messages to the

same topic and allows multiple consumer nodes to receive messages in a topic.

A. Message Queues

A widely used tool for sending messages is via a message broker which is also known as a message

queue which is essentially a kind of database that is optimized for handling message streams. It runs as

a server, with producers and con- sumers connecting to it as clients. Producers write messages to the

broker, and consumers receive them by reading them from the broker. By centralizing the data in the

broker, these systems can more easily tolerate clients that connect, disconnect, and crash, and broker

handles the problem of durability. Some message brokers only keep messages in memory, while others

write them to disk so that they are not lost in case of a broker crash. Faced with slow consumers,

they generally allow unbounded queueing, although this choice may also depend on the configuration.

A consequence of queueing is also that consumers are generally asynchronous: when a producer sends a

message, it normally only waits for the broker to confirm that it has buffered the message and does not

wait for the message to be processed by consumers. The delivery to consumers will happen at some

undetermined future point in time, but sometimes significantly later if there is a queue backlog.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 3

Databases usually keep data until it is explicitly deleted, whereas most message brokers automatically

delete a message when it has been successfully delivered to its consumers. Such message brokers are

not suitable for long-term data storage. This is the traditional view of message brokers, which is

encapsulated in standards like JMS [7] and implemented in software like RabbitMQ, and Google Cloud

Pub/Sub [8].

When multiple consumers read messages in the same topic, two main patterns of messaging are used.

One is load balancing where each message is delivered to one of the consumers, so the consumers can

share the work of processing the messages in the topic. The broker may assign messages to consumers

randomly. This pattern is useful when the messages are expensive to process, and so you want to be able

to add consumers to parallelize the processing. Other one is fan out model where each message is

delivered to all of the consumers. Fan-out model allows multiple independent consumers to each

subscribe to the same broadcast of messages without affecting each other. Consumers may crash at any

time, so it could happen that a broker delivers a message to a consumer but the consumer never

processes it, or only partially processes it before crashing. In order to ensure that the message is not

lost, message brokers use acknowledgments. A client must explicitly tell the broker when it has finished

processing a message so that the broker can remove it from the queue. As the acknowledgment timing

may vary consumer to consumer and broker may end up sending the older messages to the consumers

again which result in missing the order of mes- sages. Even if the message broker otherwise tries to

preserve the order of messages, the combination of load balancing with redelivery inevitably leads to

messages being re-ordered which can be avoided by maintaining a separate queue for each consumer. In

case of message queues, a new consumer joining at a later stage will only receive messages sent after

it is registered and prior messages cannot be recovered from the new consumer standpoint. This problem

is addressed using Log-based message brokers.

B. Log-based Message Brokers

A log is simply an append-only sequence of records on disk. The same structure can be used to

implement a message broker where a producer sends a message by appending it to the end of the

log, and a consumer receives messages by reading the log sequentially. If a consumer reaches the

end of the log, it waits for a notification that a new message has been appended. In order to scale to

higher throughput than a single disk can offer, the log can be partitioned. Different partitions can then

be hosted on different machines, making each partition a separate log that can be read and written

independently from other partitions. A topic can then be defined as a group of partitions that all

carry messages of the same type. Brokers assign a monotonically increasing number within each

partition called as offset. Apache Kafka [3] Amazon Kinesis Streams [9], and Twitter’s DistributedLog

[10] are log-based message brokers that work like this. Google Cloud Pub/Sub [8] is architecturally

similar but exposes a JMS-style API rather than a log abstraction. Consuming a partition sequentially

makes it easy to tell which messages have been processed, all messages with an offset less than a

consumer’s current offset have already been processed, and all messages with a greater offset have not

yet been seen. Thus, the broker does not need to track acknowledgments for every single message it

only needs to periodically record the consumer offsets. The reduced bookkeeping overhead and the

opportunities for batching and pipelining in this approach help increase the throughput of log-based

systems. If a consumer node fails, another node in the consumer group is assigned the failed

consumer’s partitions, and it starts consuming messages at the last recorded offset. If the consumer had

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 4

processed subsequent messages but not yet recorded their offset, those messages will be processed a

second time upon restart.

If we only ever append to the log, you will eventually run out of disk space. To reclaim disk space, the

log is actually divided into segments, and from time to time old segments are deleted or moved to

archive storage. This means that if a slow consumer cannot keep up with the rate of messages, and it

falls so far behind that its consumer offset points to a deleted segment, it will miss some of the

messages. Effectively, the log implements a bounded-size buffer that dis- cards old messages when it

gets full, also known as a circular buffer or ring buffer. However, since that buffer is on disk, it can be

quite large. The throughput of a log remains more or less constant, since every message is written to

disk anyway. This behavior is in contrast to messaging systems that keep messages in memory by

default and only write them to disk if the queue grows too large and such systems are fast when queues

are short and become much slower when they start writing to disk.

III. STREAMING FOR DATABASES

Though databases are developed very prior to streaming systems, we have some use cases where

streaming systems can be used to support databases. A replication log is a stream of database write

events, produced by the leader as it processes transactions. The followers apply that stream of writes to

their own copy of the database and thus end up with an accurate copy of the same data. Infact there is

no single system that can satisfy all data storage, querying, and processing needs. Most applications

need to combine several different technologies in order to satisfy their requirements. For example,

using an OLTP database to serve user requests, a cache to speed up common requests, a full-text index

to handle search queries, and a data warehouse for analytics. Each of these has its own copy of the

data, stored in its own representation that is optimized for its own purposes. These different

representations of data that appears in different places needs to be kept in sync with one another for

responding to requests accurately. Change data capture is a mechanism for ensuring that all changes

made to the system of record are also reflected in the derived data systems so that the derived systems

have an accurate copy of the data. Essentially, change data capture makes one database the leader, and

turns the others into followers. A log-based message broker is well suited for transporting the change

events from the source database, since it preserves the ordering of messages. Database triggers can be

used to implement change data capture by registering triggers that observe all changes to data tables

and add corresponding entries to a changelog table. However, they tend to be fragile and have

significant performance overheads. LinkedIn’s Databus [11], Facebook’s Wormhole [12]. Like

message brokers, change data capture is usually asynchronous where the system of record database

does not wait for the change to be applied to consumers before committing it.

Similarly to change data capture, event sourcing involves storing all changes to the application state

as a log of change events. In change data capture, the application uses the database in a mutable way,

updating and deleting records at will. The log of changes is extracted from the database at a low level,

which ensures that the order of writes extracted from the database matches the order in which they were

actually written, avoiding the race condition. In event sourcing, the application logic is explicitly built

on the basis of immutable events that are written to an event log. In this case, the event store is append-

only, and updates or deletes are discouraged or prohibited. Events are designed to reflect things that

happened at the application level, rather than low-level state changes.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 5

IV. STREAM PROCESSING USECASES AND IMPLEMENTATION

Streaming data can be taken as events and write it to a database, cache, search index, or similar storage

system, from where it can then be queried by other clients. Database can be kept in sync with

changes happening in other parts of the systems especially if the consumer is the only client writing to

the database. We can push the events to users in some way, for example by sending email alerts or push

notifications, or by streaming the events to a real-time dashboard where they are visualized. We can

process one or more input streams to produce one or more output streams. Streams may go through a

pipeline consisting of several such processing stages before they eventually end up at an output.

Stream processing has long been used for monitoring purposes, like fraud detection systems need to

determine if the usage patterns of a credit card have unexpectedly changed, and block the card if it is

likely to have been stolen. Manufacturing systems need to monitor the status of machines in a factory,

and quickly identify the problem if there is a malfunction. Various types of use cases of stream

processing have emerged over time. Complex event processing systems often use a high-level

declarative query language like SQL, or a graphical user interface, to describe the patterns of events that

should be detected. These queries are submitted to a processing engine that consumes the input streams

and internally maintains a state machine that performs the required matching. Another area stream

processing is used heavily is for analytics on streams. Some usecases for analytics on streams include

measuring the rate of some type of event, calculating the rolling average of a value over some time

period.

Stream processors often need to deal with time, especially when used for analytics purposes, which

frequently use time windows. In a batch process, the processing tasks rapidly crunch through a large

collection of historical events. If some kind of breakdown by time needs to happen, the batch process

needs to look at the timestamp embedded in each event. There is no point in looking at the system

clock of the machine running the batch process, because the time at which the process is run has

nothing to do with the time at which the events actually occurred. Many stream processing frameworks

use the local system clock on the processing machine to determine windowing. This approach has the

advantage of being simple, and it is reasonable if the delay between event creation and event

processing is negligibly short. There are many reasons why processing may be delayed like queueing,

network faults, a performance issue leading to contention in the message broker or processor, a

restart of the stream consumer, or reprocessing of past events while recovering from a fault or after

fixing a bug in the code. Once you know how the timestamp of an event should be determined, the next

step is to decide how windows over time periods should be defined. The window can then be used for

aggregations. Commonly used windows in stream processing are Tumbling Window - A tumbling

window has a fixed length, and every event belongs to exactly one window. Tumbling Window cab be

implemented by a 1-minute tumbling window by taking each event timestamp and rounding it down to

the nearest minute to determine the window that it belongs to, Hopping Window - A hopping window

also has a fixed length, but allows windows to overlap in order to provide some smoothing. It can be

im- plemented this hopping window by first calculating 1-minute tumbling windows, and then

aggregating over several adjacent windows, Sliding Window - A sliding window contains all the events

that occur within some interval of each other. A sliding window can be implemented by keeping a

buffer of events sorted by time and removing old events when they expire from the window, Session

Window - Unlike the other window types, a session window has no fixed duration. Instead, it is defined

by grouping together all events for the same user that occur

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 6

closely together in time, and the window ends when the user has been inactive for some time.

One common solution for fault tolerance in stream process- ing frameworks is to break the stream into

small blocks, and treat each block like a mini batch process. This approach is called microbatching, and

it is used in Spark Streaming [6]. The batch size is typically around one second, which is the result of a

performance compromise. Smaller batches incur greater scheduling and coordination overhead, while

larger batches mean a longer delay before results of the stream processor become visible. A variant

approach, used in Apache Flink [4], is to periodically generate rolling checkpoints of state and write

them to durable storage. If a stream operator crashes, it can restart from its most recent checkpoint and

dis- card any output generated between the last checkpoint and the crash. The checkpoints are triggered

by barriers in the message stream, similar to the boundaries between microbatches, but without forcing a

particular window size.

V. CONCLUSION

The surge in real-time data generation across various indus- tries has necessitated a shift from traditional

batch processing to stream processing, which enables continuous data flow han- dling with minimal

latency. This paper has comprehensively analyzed why stream processing is essential, highlighting its

advantages over batch-oriented methods, especially in scenar- ios requiring instant decision-making,

high-speed analytics, and event-driven architectures. In this paper we have discussed event streams, what

purposes they serve, and how to process them. In some ways, stream processing is very much like the

batch processing, but done continuously on unbounded streams rather than on a fixed-size input. We also

discussed types of message brokers, few challenges faced from message brokers and how log-based

message queues address these challenges. This paper has also provided an in-depth exploration of stream

processing internals, discussing essential concepts such as data ingestion, partitioning, event-time vs.

processing-time semantics, windowing techniques, stateful processing, and fault tolerance mechanisms.

These architectural elements are crucial for building efficient, scalable, and resilient stream pro- cessing

systems. The discussion also extended to distributed computing strategies, including parallelism,

checkpointing, fault recovery, and scalability, which ensure the robustness of modern stream

processing solutions. Looking toward the future, the evolution of stream processing will continue to

be shaped by emerging trends such as the fusion of artificial intelligence (AI) and machine learning

(ML) with real-time data analytics. These integrations will enhance automation, predictive insights, and

adaptive decision-making capabilities.

REFERENCES

[1] D. Borthakur, ”The Hadoop Distributed File System: Architecture and Design,” The Apache

Software Foundation, 2007. [Online]. Available: https://hadoop.apache.org.

[2] Amazon Web Services, ”Amazon Simple Storage Service (S3): Devel- oper Guide,” Amazon Web

Services (AWS), 2023. [Online]. Available: https://docs.aws.amazon.com/s3/.

[3] Apache Software Foundation, ”Kafka Streams: Stream Processing with Apache Kafka,” Apache

Kafka Documentation, 2023. [Online]. Avail- able:

https://kafka.apache.org/documentation/streams/.

[4] Apache Software Foundation, ”Apache Flink: Scalable Stream and Batch Data Processing,” Apache

Flink Documentation, 2023. [Online]. Available: https://flink.apache.org/.

[5] Apache Software Foundation, ”Apache Storm: Distributed Real-time Computation System,”

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041368 Volume 5, Issue 4, April 2024 7

Apache Storm Documentation, 2023. [Online]. Available: https://storm.apache.org/.

[6] Apache Software Foundation, ”Spark Streaming: Scalable and Fault- Tolerant Stream Processing,”

Apache Spark Documentation, 2023. [On- line]. Available: https://spark.apache.org/streaming/.

[7] M. Hapner, R. Burridge, and G. Sharma, ”Java Message Service (JMS): A Distributed Messaging

Standard,” Proceedings of the JavaOne Con- ference, San Francisco, CA, USA, 2002.

[8] Google Cloud, ”Pub/Sub: A Scalable Messaging Middleware for Event- Driven Architectures,”

Google Cloud Whitepaper, 2023. [Online]. Avail- able: https://cloud.google.com/pubsub/docs/.

[9] Amazon Web Services, ”Amazon Kinesis Streams: Real-Time Data Streaming,” Amazon Web

Services (AWS) Documentation, 2023. [On- line]. Available:

https://aws.amazon.com/kinesis/streams/.

[10] Twitter, ”Distributed Log: Building and Maintaining a High-Throughput Messaging Platform at

Twitter,” Twitter Engineering Whitepaper, 2016. [Online]. Available:

https://engineering.twitter.com/.

[11] S. Chintalapudi, S. N. Chockalingam, and N. S. V. S. Srinivas, ”Databus: A Distributed Change Data

Capture System for Large-Scale Data Replication,” Proceedings of the 2014 ACM International

Conference on Management of Data (SIGMOD), Snowbird, UT, USA, 2014, pp. 1201-1212.

[12] A. Shriram, D. K. Ghosh, and T. S. Choi, ”Wormhole: Real-Time Event Streaming for Facebook’s

Infrastructure,” Proceedings of the 2016 ACM International Conference on Distributed Systems

(ICDCS), Nanjing, China, 2016, pp. 250-261.

https://www.ijlrp.com/

