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Abstract 

Batch processing is widely used concept in data warehousing where many companies build 

analytical solutions deriving insights into their systems and building new products based on the 

analysis based on various aspects of the systems. The exponential growth of real-time data sources 

like IoT sensors, social media has necessitated systems capable of processing unbounded data 

streams with low latency, high throughput, and guaranteed correctness. Unlike batch processing, 

stream process- ing engines must handle continuous data flows with dynamic arrival patterns, out-

of-order events, and variable workloads. The problem with daily batch processes is that changes in 

the input are only reflected in the output a day later, which is too slow for some use cases. To 

reduce the delay, we can run the processing more frequently. In the batch processing world, the 

inputs and outputs of a job are files may be on distributed file system like HDFS [1] or Amazon S3 

[2]. Stream processing has emerged as a critical computational model that enables real-time 

ingestion, transformation, and analysis of continuous data streams. This paper presents a 

comprehensive exploration of the necessity for stream processing, identifying its use cases over 

batch processing and its suitability for latency-sensitive applications such as financial trading, 

fraud detection, and Internet of Things (IoT) systems. We begin by establishing the fundamental 

motivation behind stream processing, outlining key challenges associated with real-time data 

analytics, including data velocity, system scalability, and fault tolerance. The discussion highlights 

the lim- itations of traditional batch processing frameworks like Apache Hadoop and their 

inability to efficiently handle continuous data flows. In contrast, we analyze how stream 

processing frameworks such as Apache Kafka [3], Apache Flink [4], Apache Storm [5], and Spark 

Streaming [6] address these challenges by enabling near real-time event-driven computations. 
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I. INTRODUCTION 

The ever-growing volume of real-time data generated across industries such as finance and IoT has 

exposed the limitations of traditional batch-processing models. These conventional approaches, which 

process data in discrete intervals, struggle to keep up with the increasing need for instant insights, low- 

latency decision-making, and high-throughput analytics. In contrast, stream processing has emerged, 

allowing for continu- ous data ingestion, real-time computation, and rapid responses to events as they 

occur. This shift is essential for modern applications that require immediate data-driven actions, mak- 

ing stream processing an indispensable component of today’s computing. Traditional batch-processing 
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frameworks, such as Apache Hadoop, are inherently unsuitable for scenarios that demand real-time 

responsiveness. They introduce delays due to their scheduled, periodic execution cycles, making them 

ineffective for applications where milliseconds matter. For instance, stock market fluctuations require 

immediate analysis to drive automated trading strategies, while cybersecurity systems must detect and 

mitigate threats in real-time to prevent potential breaches, bank transactions fraud detection must be 

detected in real-time to prevent scams. To overcome these constraints, stream processing frameworks 

such as Apache Flink [4], Apache Kafka Streams [3], Apache Storm [5], and Spark Streaming [6] 

have been developed to enable continuous, event-driven computations with low latency, high 

availability, and fault tolerance. The proliferation of connected devices, sensors, and digital interactions 

has resulted in an influx of continuous data that traditional batch processing models cannot efficiently 

handle. Industries such as fraud detection, predictive maintenance, network security, and algo- rithmic 

trading require immediate processing and response to data as it arrives. Modern stream processing 

solutions leverage distributed computing, ensuring efficient scalability and fault tolerance while 

handling vast, high-velocity data streams. Many modern applications rely on event-driven architectures 

where decisions are triggered by real-time events, requiring seamless data processing pipelines that react 

instantly. Stream processing frameworks are designed to integrate with existing big data architectures, 

including cloud data lakes, NoSQL databases, and enterprise data pipelines, enhancing operational 

efficiency. 

II. STREAM PROCESSING INTERNALS 

In continual processing methodology with low delays polling becomes expensive with traditional 

relational databases as they are not designed for these kind of use cases. Relational databases commonly 

have triggers, which can react to a change but they are very limited in what they can do and have 

been somewhat of an afterthought in database design. New specialized tools like messaging systems 

are developed where a producer sends a message containing the event, which is then pushed to 

consumers. A direct communication channel like a Unix pipe or TCP connection between producer and 

consumer would be a simple way of implementing a mes- saging system. However, most messaging 

systems expand on this basic model. In particular, Unix pipes and TCP connect exactly one sender with 

one recipient, whereas a messaging system allows multiple producer nodes to send messages to the 

same topic and allows multiple consumer nodes to receive messages in a topic. 

A. Message Queues 

A widely used tool for sending messages is via a message broker which is also known as a message 

queue which is essentially a kind of database that is optimized for handling message streams. It runs as 

a server, with producers and con- sumers connecting to it as clients. Producers write messages to the 

broker, and consumers receive them by reading them from the broker. By centralizing the data in the 

broker, these systems can more easily tolerate clients that connect, disconnect, and crash, and broker 

handles the problem of durability. Some message brokers only keep messages in memory, while others 

write them to disk so that they are not lost in case of a broker crash. Faced with slow consumers, 

they generally allow unbounded queueing, although this choice may also depend on the configuration. 

A consequence of queueing is also that consumers are generally asynchronous: when a producer sends a 

message, it normally only waits for the broker to confirm that it has buffered the message and does not 

wait for the message to be processed by consumers. The delivery to consumers will happen at some 

undetermined future point in time, but sometimes significantly later if there is a queue backlog. 
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Databases usually keep data until it is explicitly deleted, whereas most message brokers automatically 

delete a message when it has been successfully delivered to its consumers. Such message brokers are 

not suitable for long-term data storage. This is the traditional view of message brokers, which is 

encapsulated in standards like JMS [7] and implemented in software like RabbitMQ, and Google Cloud 

Pub/Sub [8]. 

 

When multiple consumers read messages in the same topic, two main patterns of messaging are used. 

One is load balancing where each message is delivered to one of the consumers, so the consumers can 

share the work of processing the messages in the topic. The broker may assign messages to consumers 

randomly. This pattern is useful when the messages are expensive to process, and so you want to be able 

to add consumers to parallelize the processing. Other one is fan out model where each message is 

delivered to all of the consumers. Fan-out model allows multiple independent consumers to each 

subscribe to the same broadcast of messages without affecting each other. Consumers may crash at any 

time, so it could happen that a broker delivers a message to a consumer but the consumer never 

processes it, or only partially processes it before crashing. In order to ensure that the message is not 

lost, message brokers use acknowledgments. A client must explicitly tell the broker when it has finished 

processing a message so that the broker can remove it from the queue. As the acknowledgment timing 

may vary consumer to consumer and broker may end up sending the older messages to the consumers 

again which result in missing the order of mes- sages. Even if the message broker otherwise tries to 

preserve the order of messages, the combination of load balancing with redelivery inevitably leads to 

messages being re-ordered which can be avoided by maintaining a separate queue for each consumer. In 

case of message queues, a new consumer joining at a later stage will only receive messages sent after 

it is registered and prior messages cannot be recovered from the new consumer standpoint. This problem 

is addressed using Log-based message brokers. 

B. Log-based Message Brokers 

A log is simply an append-only sequence of records on disk. The same structure can be used to 

implement a message broker where a producer sends a message by appending it to the end of the 

log, and a consumer receives messages by reading the log sequentially. If a consumer reaches the 

end of the log, it waits for a notification that a new message has been appended. In order to scale to 

higher throughput than a single disk can offer, the log can be partitioned. Different partitions can then 

be hosted on different machines, making each partition a separate log that can be read and written 

independently from other partitions. A topic can then be defined as a group of partitions that all 

carry messages of the same type. Brokers assign a monotonically increasing number within each 

partition called as offset. Apache Kafka [3] Amazon Kinesis Streams [9], and Twitter’s DistributedLog 

[10] are log-based message brokers that work like this. Google Cloud Pub/Sub [8] is architecturally 

similar but exposes a JMS-style API rather than a log abstraction. Consuming a partition sequentially 

makes it easy to tell which messages have been processed, all messages with an offset less than a 

consumer’s current offset have already been processed, and all messages with a greater offset have not 

yet been seen. Thus, the broker does not need to track acknowledgments for every single message it 

only needs to periodically record the consumer offsets. The reduced bookkeeping overhead and the 

opportunities for batching and pipelining in this approach help increase the throughput of log-based 

systems. If a consumer node fails, another node in the consumer group is assigned the failed 

consumer’s partitions, and it starts consuming messages at the last recorded offset. If the consumer had 
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processed subsequent messages but not yet recorded their offset, those messages will be processed a 

second time upon restart. 

If we only ever append to the log, you will eventually run out of disk space. To reclaim disk space, the 

log is actually divided into segments, and from time to time old segments are deleted or moved to 

archive storage. This means that if a slow consumer cannot keep up with the rate of messages, and it 

falls so far behind that its consumer offset points to a deleted segment, it will miss some of the 

messages. Effectively, the log implements a bounded-size buffer that dis- cards old messages when it 

gets full, also known as a circular buffer or ring buffer. However, since that buffer is on disk, it can be 

quite large. The throughput of a log remains more or less constant, since every message is written to 

disk anyway. This behavior is in contrast to messaging systems that keep messages in memory by 

default and only write them to disk if the queue grows too large and such systems are fast when queues 

are short and become much slower when they start writing to disk. 

III. STREAMING FOR DATABASES 

Though databases are developed very prior to streaming systems, we have some use cases where 

streaming systems can be used to support databases. A replication log is a stream of database write 

events, produced by the leader as it processes transactions. The followers apply that stream of writes to 

their own copy of the database and thus end up with an accurate copy of the same data. Infact there is 

no single system that can satisfy all data storage, querying, and processing needs. Most applications 

need to combine several different technologies in order to satisfy their requirements. For example, 

using an OLTP database to serve user requests, a cache to speed up common requests, a full-text index 

to handle search queries, and a data warehouse for analytics. Each of these has its own copy of the 

data, stored in its own representation that is optimized for its own purposes. These different 

representations of data that appears in different places needs to be kept in sync with one another for 

responding to requests accurately. Change data capture is a mechanism for ensuring that all changes 

made to the system of record are also reflected in the derived data systems so that the derived systems 

have an accurate copy of the data. Essentially, change data capture makes one database the leader, and 

turns the others into followers. A log-based message broker is well suited for transporting the change 

events from the source database, since it preserves the ordering of messages. Database triggers can be 

used to implement change data capture by registering triggers that observe all changes to data tables 

and add corresponding entries to a changelog table. However, they tend to be fragile and have 

significant performance overheads. LinkedIn’s Databus [11], Facebook’s Wormhole [12]. Like 

message brokers, change data capture is usually asynchronous where the system of record database 

does not wait for the change to be applied to consumers before committing it. 

Similarly to change data capture, event sourcing involves storing all changes to the application state 

as a log of change events. In change data capture, the application uses the database in a mutable way, 

updating and deleting records at will. The log of changes is extracted from the database at a low level, 

which ensures that the order of writes extracted from the database matches the order in which they were 

actually written, avoiding the race condition. In event sourcing, the application logic is explicitly built 

on the basis of immutable events that are written to an event log. In this case, the event store is append-

only, and updates or deletes are discouraged or prohibited. Events are designed to reflect things that 

happened at the application level, rather than low-level state changes. 
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IV. STREAM PROCESSING USECASES AND IMPLEMENTATION 

Streaming data can be taken as events and write it to a database, cache, search index, or similar storage 

system, from where it can then be queried by other clients. Database can be kept in sync with 

changes happening in other parts of the systems especially if the consumer is the only client writing to 

the database. We can push the events to users in some way, for example by sending email alerts or push 

notifications, or by streaming the events to a real-time dashboard where they are visualized. We can 

process one or more input streams to produce one or more output streams. Streams may go through a 

pipeline consisting of several such processing stages before they eventually end up at an output. 

Stream processing has long been used for monitoring purposes, like fraud detection systems need to 

determine if the usage patterns of a credit card have unexpectedly changed, and block the card if it is 

likely to have been stolen. Manufacturing systems need to monitor the status of machines in a factory, 

and quickly identify the problem if there is a malfunction. Various types of use cases of stream 

processing have emerged over time. Complex event processing systems often use a high-level 

declarative query language like SQL, or a graphical user interface, to describe the patterns of events that 

should be detected. These queries are submitted to a processing engine that consumes the input streams 

and internally maintains a state machine that performs the required matching. Another area stream 

processing is used heavily is for analytics on streams. Some usecases for analytics on streams include 

measuring the rate of some type of event, calculating the rolling average of a value over some time 

period. 

Stream processors often need to deal with time, especially when used for analytics purposes, which 

frequently use time windows. In a batch process, the processing tasks rapidly crunch through a large 

collection of historical events. If some kind of breakdown by time needs to happen, the batch process 

needs to look at the timestamp embedded in each event. There is no point in looking at the system 

clock of the machine running the batch process, because the time at which the process is run has 

nothing to do with the time at which the events actually occurred. Many stream processing frameworks 

use the local system clock on the processing machine to determine windowing. This approach has the 

advantage of being simple, and it is reasonable if the delay between event creation and event 

processing is negligibly short. There are many reasons why processing may be delayed like queueing, 

network faults, a performance issue leading to contention in the message broker or processor, a 

restart of the stream consumer, or reprocessing of past events while recovering from a fault or after 

fixing a bug in the code. Once you know how the timestamp of an event should be determined, the next 

step is to decide how windows over time periods should be defined. The window can then be used for 

aggregations. Commonly used windows in stream processing are Tumbling Window - A tumbling 

window has a fixed length, and every event belongs to exactly one window. Tumbling Window cab be 

implemented by a 1-minute tumbling window by taking each event timestamp and rounding it down to 

the nearest minute to determine the window that it belongs to, Hopping Window - A hopping window 

also has a fixed length, but allows windows to overlap in order to provide some smoothing. It can be 

im- plemented this hopping window by first calculating 1-minute tumbling windows, and then 

aggregating over several adjacent windows, Sliding Window - A sliding window contains all the events 

that occur within some interval of each other. A sliding window can be implemented by keeping a 

buffer of events sorted by time and removing old events when they expire from the window, Session 

Window - Unlike the other window types, a session window has no fixed duration. Instead, it is defined 

by grouping together all events for the same user that occur  
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closely together in time, and the window ends when the user has been inactive for some time. 

One common solution for fault tolerance in stream process- ing frameworks is to break the stream into 

small blocks, and treat each block like a mini batch process. This approach is called microbatching, and 

it is used in Spark Streaming [6]. The batch size is typically around one second, which is the result of a 

performance compromise. Smaller batches incur greater scheduling and coordination overhead, while 

larger batches mean a longer delay before results of the stream processor become visible. A variant 

approach, used in Apache Flink [4], is to periodically generate rolling checkpoints of state and write 

them to durable storage. If a stream operator crashes, it can restart from its most recent checkpoint and 

dis- card any output generated between the last checkpoint and the crash. The checkpoints are triggered 

by barriers in the message stream, similar to the boundaries between microbatches, but without forcing a 

particular window size. 

V. CONCLUSION 

The surge in real-time data generation across various indus- tries has necessitated a shift from traditional 

batch processing to stream processing, which enables continuous data flow han- dling with minimal 

latency. This paper has comprehensively analyzed why stream processing is essential, highlighting its 

advantages over batch-oriented methods, especially in scenar- ios requiring instant decision-making, 

high-speed analytics, and event-driven architectures. In this paper we have discussed event streams, what 

purposes they serve, and how to process them. In some ways, stream processing is very much like the 

batch processing, but done continuously on unbounded streams rather than on a fixed-size input. We also 

discussed types of message brokers, few challenges faced from message brokers and how log-based 

message queues address these challenges. This paper has also provided an in-depth exploration of stream 

processing internals, discussing essential concepts such as data ingestion, partitioning, event-time vs. 

processing-time semantics, windowing techniques, stateful processing, and fault tolerance mechanisms. 

These architectural elements are crucial for building efficient, scalable, and resilient stream pro- cessing 

systems. The discussion also extended to distributed computing strategies, including parallelism, 

checkpointing, fault recovery, and scalability, which ensure the robustness of modern stream 

processing solutions. Looking toward the future, the evolution of stream processing will continue to 

be shaped by emerging trends such as the fusion of artificial intelligence (AI) and machine learning 

(ML) with real-time data analytics. These integrations will enhance automation, predictive insights, and 

adaptive decision-making capabilities. 
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