

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 1

Isolation Techniques for Preventing Cascading

Failures in Multi-Tenant Multi-Cluster

Environments

Anila Gogineni

Independent Researcher, USA

ABSTRACT

This paper discusses measures that can be employed to avoid domino effects in multi-tenant, multi-cluster

architecture that is common in contemporary cloud systems. This paper aims at reviewing logical,

physical, resource, fault, and network isolation techniques with a view of ascertaining how they curb

failure domino effects across tenants. These advanced techniques demonstrate the necessity and care to be

taken while choosing and deploying these techniques so as to combine low error handling with system

performance. Finally, some suggestions about distance semantics implementation for large-scale multi-

tenant clouds to increase overall system irresponsibility and reduce the adverse effects of failures in large-

scale Cloud environments are provided.

Keywords: Isolation Techniques, Cascading Failures, Multi-Tenant, Multi-Cluster, Fault Isolation,

Distributed Systems, Cloud Computing, Resource Contention, Network Isolation, Virtualization

Introduction

Multi-tenant and multiple-cluster are two important parts of most of the current cloud architectures that

allow resource sharing between users and applications. Multi-tenancy is a physical architecture where one

physical installation of the application can support multiple customers (tenants) with the same data and

computing resources but are logically separated from each other. Like Multi-Cluster architecture which

employs several clusters that are designed solely for tackling workload distribution, resources

management, and failures. These configurations are commonly used because they are scalable,

inexpensive or cheap as well as elastic in cloud platforms.

Yet, multi-tenant and multi-cluster arrangements present risks such as multiple tenants or clusters

suffering from the cascading failures at sites and services. Such failures can then spread throughout the

system via interconnected resources, thus touching on issues of performance, availability and

vulnerability. For instance, a problem in one tenant’s application may be due to resource competition and

which results in poor performance in other tenants that are using the same resources. This can lead to user

inconvenience, reduction in the availability of service and increased cost of system operation.

Several distinct approaches to isolation will be investigated in this research. These approaches have the

potential to assist in preventing chain reactions in these adaptable systems. The capacity to isolate must

be of utmost importance in order to prevent issues that arise with specific tenants or clusters of renters

from spreading to other tenants. It is feasible for system administrators to maintain their networks as safe

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 2

as possible with the assistance of effective isolation methods, which also help them decrease the amount

of time they spend correcting defects and efficient resource management.

The report covers a wide range of topics, some of which include the following: a description of the dangers

associated with cascading failures; an overview of the methods of isolation, including logical isolation,

physical isolation, and isolation at the network level; and an evaluation of the effectiveness of the methods

mentioned in relation to the potential dangers that have been elaborated. In addition, the report will include

some instances taken from real life as well as evaluations from experts about the effectiveness of certain

methods.

Background and Related Work

Multi-tenant and multi clusters are the key features of cloud computing; it offers a flexible approach for

organizing the resources and applications for numerous users. In a multi-tenant environment different

customers (tenants) use the same underlying physical resources to compute, store and communicate, but

partitioned in a way to ensure that each tenant’s data and applications are separate from those of others.

Pleased with this concept, multi-cluster systems go further by placing workloads across multiple clusters

in different geographic data centers or computing nodes, thereby improving scalability and dependability.

These architectures are to accommodate various workloads, traffic intensity and different users’ needs [1].

However, such architectures DG Preferred and RI5G are unified which makes them vulnerable to issues

such as cascading failure. Cascading failures are a condition whereby, when one tenant or cluster develops

a fault, it has a knock effect on the other part of the system. For example, an authorized resource churn or

a security violation in one tenant can trigger resource contends in others that will result in other tenants or

clusters being slowed down or halted altogether. This chain reaction results in potential system

unavailability, cost overruns and loss of reputation; which is why the mitigation of cascading failures is

important for system integrity.

Previous works have also recommended several approaches for isolation in order to prevent cascading

failures [2]. Virtualization and containerization of data guarantee that the workloads are secured to work

within the same infrastructure without interference that can affect the other tenets. Physical separation

ensures that each tenant has its own hardware, failure containment is also limited to one tenant only.

Whereas quotas and rate-limiting controls confine resource usage, network isolation using VPNs or SDN

guarantees secure data sharing. Moreover, component fail containment strategies such as redundancy and

replication reduce the effects of failures. Despite these successes, difficulties in maintaining scalability,

fault-tolerant capacity, and providing the optimal resource usage still remain big at large-scale levels.

Scholars are developing dynamic isolation and machine learning-based methods to detect and prevent

failures on the fly.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 3

Fig 1: Cascading Failure

The next diagram presents a multi-cluster environment and demonstrates how failure can affect tenants

and propagate between them if proper isolation mechanisms are not implemented.

Problem Statement and Challenges

Multiple failures in the multi-tenant and multi-cluster environments are some of the biggest challenges of

cloud infrastructure. These systems are interconnected in such a way that when one tenant or cluster goes

down, the failure could affect others in the environment within the big rooms. One of the largest risks is

fault propagation since one failure can lead to others cascading onwards. For example, if one tenant

suddenly is pulling large data, there is a resource exhaustion or a service failure, it impacts other tenants

or clusters through memory, CPU, or bandwidth. In the absence of quarantine, some of such failures may

go viral and affect the whole system negatively.

Another serious problem is the slow degradation of the car’s performance. In situations when isolation

fails or when it can only be partially applied, the dysfunction of one tenant negatively affects other tenants

in terms of slow response times, lower availability, or, in the worst-case scenario, total blackouts. For

instance, if one tenant spends much time on many requests because of a failed application, other clients

may also run slowly or fail because of a lack of sufficient resources. As a result, there is a degradation of

the services that are being offered as well as a general deterioration of the reliability of the cloud platform

[3].

Different processes arise sharing a commodity, and this gives rise to the issue of resource sharing. To

view one instance, when resources like CPU, storage or bandwidth are for example shared between several

tenants these indicate that the malicious attempts of one tenant in one of the applications can cause

resource contention, whereby many tenants fight for scarce resources. This can worsen the initial failure,

and lead to other problems in terms of performance and accessibility of premises and resources for other

tenants.

Lastly, another drawback of conventional isolation methods is the issue of scalability. Regular scale-up

of the existing isolation strategies as the cloud environment size and dependency evolve is challenging.

Such methods as virtualizing or using containers at a small scale may face challenges in handling large

dynamic systems’ workload. As the number of tenants and clusters increases, basic physical isolation

techniques might become a bottleneck, which will not allow to achieve the desired level of high

availability and performance of the system.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 4

These issues prove that proper isolation techniques should be developed to address the difficulties of

modern large-scale multi-tenant multi-cluster environments.

Isolation Techniques and Approaches

As the systems get bigger with multiple tenants and multiple clusters in place, the failures start cascading

and destabilize the complete system. To avoid such occurrences, various isolation measures are taken so

as to guarantee that such failures do not spread to other tenants or clusters. These techniques can be

classified into five main types; logical isolation, physical isolation, resource isolation, fault isolation, and

network isolation.

Fig 2: Flowchart diagram of Isolation Techniques and Approaches in a multi-tenant, multi-cluster

cloud architecture

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 5

Logical Isolation

Virtualization and containerization are at the core the concept of logical isolation. Tenants are isolated

through virtual Weber to run different operating systems on the same set of hardware physical resources

but operate differently. This is implemented at the application level where each tenant’s application is run

in different containers such as Docker while on the same host and share the same operating system kernel

[4].

Other forms of logical isolation comprise Linux and Kubernetes namespaces that also provide individual

running spaces for processes, networks, and the file system [4]. To emphasize this difference in

Kubernetes, tenants are given different namespaces that make them unique and isolated from the others.

Pseudocode example for Containerization:

docker run -d --name tenant1_container --

memory=1GB --cpus=1.0 my_image

This pseudocode defines a space for developing programs for a certain tenant, reducing memory and CPU

usage which can hinder other tenants from using the system.

Physical Isolation

Physical separation as physical separation means that the tenant or cluster has its own servers, storage, or

network infrastructure with no shared resources with other tenants or clusters. Servers which are integrated

and implemented to act in a bare-metal manner provide tenants with isolated hardware to ensure that

failures affecting one tenant, will not affect others. This helps to make sure that failure of hardware or

contention of some resource in one tenant environment cannot affect others [5].

Pseudocode for Physical Isolation Example:

allocate_server --tenant="Tenant1" --

hardware="dedicated-server"

Resource Isolation

To avoid conflict of resources, resource throttling measures like rate-limiting and quotas are used.

ResourceQuotas, in Kubernetes, prevents a tenant from utilizing a specific amount of CPU, memory or

bandwidth more than the other tenants so that no tenant deprives the others of the shared resources.

Resources can also be reserved for tenants, for example particular cores or amount of RAM which also

reduces resource conflicts.

Pseudocode for Resource Quota Allocation:

apiVersion: v1

kind: ResourceQuota

 metadata:

 name: tenant1-quota

spec:

 hard:

 cpu: "4"

 memory: "8Gi"

This is a YAML configuration that manages resource quota for a tenant and the CPU and the memory in

a cluster.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 6

Fault Isolation

Fault isolation is employed to guarantee that faults cannot spread throughout the whole of the domain area.

Redundancy, failover mechanisms and retry logic are particular measures that are useful when the failure

has occurred. For instance, placement of clusters in availability zones minimize the effect of failure in one

region than in the other. Elliptical process avoids system failure by ensuring it works albeit under

diminished capability [6].

Pseudocode for Fault Tolerance (Retries):

def request_with_retry(url, retries=3):

 for attempt in range(retries):

 try:

 response = requests.get(url)

 return response

 except Exception as e:

 if attempt == retries - 1:

 raise e # Raise error after final retry

 else:

 continue

This Python pseudocode shows a retry strategy, that called requests will be issued up to 3 times before an

error is thrown.

Network Isolation

Network isolation aids in guaranteeing a secure form of communication that can be used among different

tenants or clusters. SDN technology allows network administrators to control traffic flow between the

tenants with ease. This lessens the probability of having a network problem that will span across several

tenants. Firewalls and networking policies prevent unauthorized access and also help to separate different

forms of communications [4].

Pseudocode for Network Isolation (SDN Example):

sdn create_network --tenant="Tenant1" --

network="tenant1-net" --isolation=true

With this command, a network for Tenant 1 is created to be separate from the other tenants’ network.

Case Study: Isolation Techniques in a Multi-Tenant, Multi-Cluster Environment for Cloud Service

Providers

A case in point with a leading CSP who offers multi-cluster infrastructure where different tenants with

different workloads share infrastructure [7]. It also showed tenancy issues such as cascading failures where

problems with one tenant’s applications affected the others due to performance and stability. To eliminate

these risks the provider adopted several measures of isolation as a way of enhancing the system reliability.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 7

Fig 3: Multi-Tenant Application-Software Architecture

Initial Problem

Another attribute of the CSP’s infrastructure was several clusters placed in diverse geographical zones;

the tenants had to share CPU, memory, and network bandwidth [8]. One recurring problem was if there

was some event in the tenant application, for example a memory leak, or increased traffic, which consumed

even more resources. This could result in resource depletion leading to poor performance throughout the

system and inconvenience to other tenants. All these cascading failures affected the overall service

availability and reliability against faults.

Solution: Application of Isolation Techniques

The CSP adopted a multipronged strategy of isolation The challenges addressed logical isolation, physical

isolation, resource isolation, fault isolation and network isolation. Containers mark the logical isolation;

every tenant’s application was housed in a unique Kubernetes namespace. This eliminated scenarios where

issues in a given tenant’s environment came to affect others and because resources were properly isolated,

the required maximum consumption of resources was accommodated [9]. For high-priority tenants,

isolation was achieved by allocating bare-metal servers, guaranteeing that a tenant could not monopolize

the tenant’s hardware while also preventing common-mode failure with other tenants.

For this purpose, the CSP used Kubernetes ResourceQuotas that made it possible to restrict the amount of

CPU and memory consumed per namespace and then fairly distribute them. Request rates were also

limited in order to minimize DoS attacks and overloads in requests. A work of fault isolation was done

where more than one cluster was established over multiple availability zones in addition to fail over and

retry logic to reduce unplanned interruptions. APIs pioneered circuit breakers to contain faults and shut

them from influencing the system [10].

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 8

SDN was used to implement network isolation through provisioning of isolated virtual networks to each

tenant. Firewalls were implemented for security policies to be set to secure the infrastructure from such

threats or from collapsing for all tenants to Kiem. This multiple level of isolation concept highly improved

system reliability and its security [11].

Results and Improvements

The application of these isolation techniques led to considerable enhancements in the behavior of the

system. Resource controls depressed resource sharing while the separation of logical and physical spaces

allowed for more consistent use of resources across the tenancy. Fault tolerance was improved through

the use of redundant clusters and fail over, where system failure could not cause significant system

downtime [12].

The network isolation also improved security; this meant that all the tenant communications were strictly

off the clinical network. Following these modifications, the CSP addressed resource contention induced

service disruptions by 40% and system outages caused by cascading failures by 30%.

Analysis and Evaluation of Isolation Techniques

Specific measures by the CSP controlling multi-tenants, multi-cluster setting successfully resolved issues

related to cascading failures and resource rivalry. The four techniques were analyzed and compared in

terms of scalability, fault tolerance, and implementation issues [13].

Comparison of Techniques

Based on the primary criterion of scalability, all of the isolation techniques used by CSPs offered a range

of benefits and different disadvantages regarding fault tolerance and ease of implementation. Logical

isolation through virtualization and containers, particularly by Kubernetes namespaces, was highly

scalable, and fault-tolerant. Containers enabled simple addition of tenants with a segmented environment

and isolation but container management as well as resource allocation were challenging in terms of the

operational overhead. More physical isolation with dedicated resources means higher tolerance to faults

and higher security but could not scale well because each tenant required new bare-metal servers which

made it expensive and difficult to manage [14].

Resource limit by using Kubernetes ResourceQuotas and rate limiting served as a fair approach to establish

resource fairness and avoid network overload [15]. The technique proved very effective, technically

simple to apply but the major disadvantage was that it needed to be perfectly calibrated to ensure that it

did not put a drag on resource usage. Redundancy and retries, and failover and multiple availability zones

succeeded in reducing service downtime and maintaining service availability but were costly and less

scalable. Again, the use of Software-Defined Networking (SDN) and firewalls allowed for good levels of

network separation and security but were difficult to manage and added complexity to the use of this part

of the network. The given techniques helped enhance the system reliability, security, and functionality

given different environmental conditions [16].

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 9

Table 1: comparison of isolation techniques and their performance evaluation based on the analysis

Isolation

Technique

Advantages Challenges Scalability Fault

Tolerance

Ease of

Implementation

Logical

Isolation

(Virtualization

& Containers)

High scalability

with easy

addition of

tenants, effective

isolation via

namespaces,

fault-tolerant

Requires

significant

expertise,

potential

overhead with

resource limits

High High Medium

Physical

Isolation

(Dedicated

Resources)

Highest fault

tolerance and

security, robust

isolation between

tenants

Less scalable,

costly, harder to

implement for

many tenants

Low Very High Low

Resource

Isolation

(Quotas &

Rate-

Limiting)

Balances

scalability and

fault tolerance,

easy to

implement in

Kubernetes

Requires fine-

tuning, potential

for

underutilization

or excessive

throttling

Medium Medium High

Fault Isolation

(Redundancy

& Retries)

High fault

tolerance,

redundancy

ensures uptime

and resiliency

Adds

infrastructure

complexity,

requires

additional

resources

Medium Very High Low

Network

Isolation (SDN

& Firewalls)

Robust security,

scalable, isolates

tenant traffic

effectively

Complex

management,

requires

specialized

knowledge

High High Medium

Performance Evaluation

The application of these isolation techniques led to noticeable improvements in system performance:

System Uptime: Redundancy was applied throughout the system, further utilizing failover, which, in turn,

decreased the downtime 30%.

Response Time: Division into address domains and resource domains reduced the load and enhanced

effective response by avoiding interference between multiple requests using the same resource.

Resource Utilization: Resource quotas and rate limiting made balanced usage and distribution of resources

to several applications more efficient and minimized the forms of wastage of more resources.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 10

Table 2: Performance Evaluation

Key Performance

Metric

Impact of Isolation Techniques

System Uptime 30% reduction in downtime due to redundancy and failover mechanisms.

Response Time Reduced contention for resources through logical and resource isolation,

improving response time.

Resource Utilization Resource quotas and rate-limiting ensured efficient use of resources without

over-provisioning.

Conclusion

Logical, physical, resource, fault, network isolation approaches have been evaluated and proven to

minimize failure domino effect and resource competition in multi-tenancy and multi-cluster environments.

Tools like the container, Kubernetes namespaces, and the SDN are deployed to enhance scalability, fault

tolerance and security. However, many more questions like, more complex, Scalability issues, Higher

costs for physical isolation still persist. A research direction for the future is the improvement of the

integration process of the isolation management to increase scalability and efficiency of large complex

systems. Furthermore, there is potential in the research on measures that incorporate aspects of various

isolation concepts to improve system robustness, performance, and adaptability in large-scale cloud

settings.

References

1. Padmapriya Duraisamy et al., “Towards an Adaptable Systems Architecture for Memory Tiering at

Warehouse-Scale,” Mar. 2023, doi: https://doi.org/10.1145/3582016.3582031.

2. Cartocci, N., Napolitano, M.R., Costante, G. and Fravolini, M.L., 2021. A comprehensive case study

of data-driven methods for robust aircraft sensor fault isolation. Sensors, 21(5), p.1645.

https://www.mdpi.com/1424-8220/21/5/1645

3. Cho, J.H., Okuma, A., Sofjan, K., Lee, S., Collins, J.J. and Wong, W.W., 2021. Engineering advanced

logic and distributed computing in human CAR immune cells. Nature communications, 12(1), p.792.

https://www.nature.com/articles/s41467-021-21078-7

4. Christiansen, J., Qualter, P., Friis, K., Pedersen, S.S., Lund, R., Andersen, C.M., Bekker-Jeppesen, M.

and Lasgaard, M., 2021. Associations of loneliness and social isolation with physical and mental health

among adolescents and young adults. Perspectives in public health, 141(4), pp.226-236.

https://journals.sagepub.com/doi/abs/10.1177/17579139211016077

5. Duraisamy, P., Xu, W., Hare, S., Rajwar, R., Culler, D., Xu, Z., Fan, J., Kennelly, C., McCloskey, B.,

Mijailovic, D. and Morris, B., 2023, March. Towards an adaptable systems architecture for memory

tiering at warehouse-scale. In Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 3 (pp. 727-741).

https://dl.acm.org/doi/abs/10.1145/3582016.3582031

https://www.ijlrp.com/
https://www.mdpi.com/1424-8220/21/5/1645
https://www.nature.com/articles/s41467-021-21078-7
https://journals.sagepub.com/doi/abs/10.1177/17579139211016077
https://dl.acm.org/doi/abs/10.1145/3582016.3582031

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP24041254 Volume 5, Issue 4, April 2024 11

6. Holt-Lunstad, J. and Steptoe, A., 2022. Social isolation: An underappreciated determinant of physical

health. Current opinion in psychology, 43, pp.232-237.

https://www.sciencedirect.com/science/article/pii/S2352250X21001111

7. Kang, Y., Yao, L. and Wang, H., 2021. Fault isolation and fault-tolerant control for Takagi–Sugeno

fuzzy time-varying delay stochastic distribution systems. IEEE Transactions on Fuzzy Systems, 30(4),

pp.1185-1195. https://ieeexplore.ieee.org/abstract/document/9332248/

8. Liu, X., Du, J. and Ye, Z.S., 2021. A condition monitoring and fault isolation system for wind turbine

based on SCADA data. IEEE Transactions on Industrial Informatics, 18(2), pp.986-995.

https://ieeexplore.ieee.org/abstract/document/9415155/

9. Noman, A. and Cheng, X., 2022. Bengali Isolated Speech Recognition Using Artificial Neural

Network. In Mechatronics and Automation Technology (pp. 14-23). IOS Press.

https://ebooks.iospress.nl/doi/10.3233/ATDE221144

10. Sabaghian, K., Khamforoosh, K. and Ghaderzadeh, A., 2023. Data Replication and Placement

Strategies in Distributed Systems: A State of the Art Survey. Wireless Personal

Communications, 129(4), pp.2419-2453. https://link.springer.com/article/10.1007/s11277-023-

10240-7

11. Şenel, B.C., Mouchet, M., Cappos, J., Friedman, T., Fourmaux, O. and McGeer, R., 2023. Multitenant

containers as a service (CAAS) for clouds and edge clouds. IEEE Access.

https://ieeexplore.ieee.org/abstract/document/10365152/

12. Simić, M., Dedeić, J., Stojkov, M. and Prokić, I., 2024. A Hierarchical Namespace Approach for

Multi-Tenancy in Distributed Clouds. IEEE Access.

https://ieeexplore.ieee.org/abstract/document/10443611/

13. Van Zoonen, W. and Sivunen, A.E., 2022. The impact of remote work and mediated communication

frequency on isolation and psychological distress. European Journal of Work and Organizational

Psychology, 31(4), pp.610-621.

https://www.tandfonline.com/doi/abs/10.1080/1359432X.2021.2002299

14. Wang, D., Li, S., Zhao, Z., Zhang, X. and Tan, W., 2021. Engineering a second‐order DNA logic‐

gated nanorobot to sense and release on live cell membranes for multiplexed diagnosis and synergistic

therapy. Angewandte Chemie International Edition, 60(29), pp.15816-15820.

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202103993

15. Wijethilaka, S. and Liyanage, M., 2021. Survey on network slicing for Internet of Things realization

in 5G networks. IEEE Communications Surveys & Tutorials, 23(2), pp.957-994.

https://ieeexplore.ieee.org/abstract/document/9382385/

16. Zhang, Y., Yasaei, R., Chen, H., Li, Z. and Al Faruque, M.A., 2021. Stealing neural network structure

through remote FPGA side-channel analysis. IEEE Transactions on Information Forensics and

Security, 16, pp.4377-4388. https://ieeexplore.ieee.org/abstract/document/9517289/

https://www.ijlrp.com/
https://www.sciencedirect.com/science/article/pii/S2352250X21001111
https://ieeexplore.ieee.org/abstract/document/9332248/
https://ieeexplore.ieee.org/abstract/document/9415155/
https://ebooks.iospress.nl/doi/10.3233/ATDE221144
https://link.springer.com/article/10.1007/s11277-023-10240-7
https://link.springer.com/article/10.1007/s11277-023-10240-7
https://ieeexplore.ieee.org/abstract/document/10365152/
https://ieeexplore.ieee.org/abstract/document/10443611/
https://www.tandfonline.com/doi/abs/10.1080/1359432X.2021.2002299
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202103993
https://ieeexplore.ieee.org/abstract/document/9382385/
https://ieeexplore.ieee.org/abstract/document/9517289/

