

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22051384 Volume 3, Issue 5, May 2022 1

A Case Study on Containerizing Applications

with Docker and Apache Tomcat

Hareesh Kumar Rapolu

hareeshkumar.rapolu@gmail.com

Abstract

This case study examines the Docker containerizing process for applications through Docker and

Apache. It focuses on the integration of Apache Tomcat, a dominant Java-based web server and

servlet container. The use of Docker proves to empower developers with the ability to build

isolated environments for streamlined deployment and scaling of Tomcat-based applications. This

study documents and explains the approach for containerizing Tomcat applications and tests the

results and benefits to inform best practices of containerizing Tomcat applications. It reveals that

containerization provides better scalability alongside key benefits such as improved scalability,

environment consistency, and enhanced operational efficiency.

Keywords: Docker, Containerization, Apache Tomcat, Microservices, Deployment, DevOps,

Kubernetes

I. INTRODUCTION

Docker and Apache are evolving as some of the best solutions within the container technology as they

provide the needed capabilities for runtime environment. They are allowing a shift from the historical

manual configuration of web servers by enabling the installation of correct dependencies and

management of configuration files [1]. The Docker system creates independent application containers

that maintain operational stability across development testing and production environments [1]. Docker

containers provide complete application code alongside its entire set of dependencies, libraries

configuration files and system files [2]. The containerization approach provided by Docker eliminates

dependency conflicts while preventing configuration drift such that it stands as a preferred solution for

application deployment on Apache Tomcat. Containerization with Docker helps developers create

deployable application containers that run consistently across different environments [3]. Conversely,

Apache Tomcat is a key web server instrument which offers Java-based open-source solutions for

hosting Java servlet and JSP technology web applications. Organizations attain portability and

scalability along with management efficiency across development and testing and production

environments through Docker implementation on Tomcat-based applications. This paper provides a case

study of how Docker and Apache Tomcat can streamline the deployment process for Java web

applications.

https://www.ijlrp.com/
mailto:hareeshkumar.rapolu@gmail.com

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22051384 Volume 3, Issue 5, May 2022 2

II. RELATED WORKS

Docker and Apache Tomcat integration has had significant attention in academic and industry realms

given the increased adoption of containerized environment in software development. A significant

research attention focuses on the use of Docker in cloud environment. For example, Pahl [4] analyzed

containerization technologies in the PaaS Cloud and underscored the Docker’s benefits in the

deployment of distributed applications across different cloud platforms. The study showed that

containers are integral in dynamic scaling, strengths fault tolerance and offer resource efficiency in

cloud-based infrastructure. Docker's adoption also explains the advent of microservices architectures

where organizations decompose monolithic applications into smaller, standalone deployable services. A

systematic review by Fowler and Lewis [5] shows that Docker's containerization benefits microservices

since they break down applications into small independent deployable units. The current case study

encapsulates its monolithic Tomcat application inside a Docker container while enabling the system for

potential future microservices architecture deployment.Other studies have focused on critical challenges

associated with deployment of Apache Tomcat in Docker environments. Combe et al. [6], for example,

established that while Docker container allows for process-level isolation, additional configurations are

required to achieve security of containers in production environment. Several areas of vulnerabilities

exist in multitenant environment. The findings suggest the need for proactive security practices during

the deployment of containerized applications. This consideration is made in the subsequent case study.

III. CONTAINERIZINGAPACHETOMCATAPPLICATIONS

Dockerization process of Java web application with Apache Tomcat and Docker is demonstrated in this

case study. The steps involved include configuring the environment, Dockerfile creation for building

docker images, container execution and management of scalable deployment [3]. These are elucidated in

the subsequent sections.

a. Setting Up the Development Environment

The introductory step in containerization is Docker installation in the local computing system.

Installation of Docker proves straightforward because many platforms supply installation packages and

platform-specific package management solutions. Apache Tomcat and Docker must be locally installed

to complete tests of the application prior to containerization. Apache Tomcat which is open source can

serve as the server as well as a web server with secure connections (such as Tomcat supports Secure

Socket Layer). It is also a Java application that run as web NMS server that is lightweight as it achieve

resource utilization and has less memory [3]. The case study adopt a basic servlet-based application as a

Web Application Archive (WAR) file. The WAR file will function within the Tomcat container.

b. Adding Dockerfile

A dockerfile is needed before creating a Docker image. A Docker file and its corresponding name are

packaged as Dockerfile [3]. An important consideration is the naming convention and the saving such

that the name starts with Capital D in addition to the appended file. The name conventions not likely to

work include DockerFile, dockerFile, Docker or dockerfle [7]. The case Dockerfile serves as a set of

instructions upon which the Docker image is build and encapsulates Apache Tomcat alongside the Java

application. Its role is to define the base image, environment configuration and steps involved in the

installation and configuration of application within the container.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22051384 Volume 3, Issue 5, May 2022 3

The Dockerfile extracts its official Tomcat image source from Docker Hub containing an already setup

Apache Tomcat platform. When the container starts, Tomcat automatically deploys the Java web

application (myapp.war) through its webapps directory. Port 8080 is the exposed for incoming HTTP

traffic before the default launch commands Tomcat server to start [8].

c. Building the Cocker Image

The image is then built after creating the docker file. It is built through the docker build command

containing the Dockerfile and generates an image with the application and Tomcat. The execution of the

command generates an image named myapp-tomcat and is ready for deployment. It contains self-

contained environment comprising the Tomcat and the Java application.

d. Running the Docker Container

The docker run command initializes launch of the container. The command initiates the container, binds

the necessary ports, and runs Tomcat within the containerized environment. the -d flag instructs Docker

to run the container in detached mode; -p 8080:8080 binds port 8080 on the host to port 8080 on the

container. When Docker successfully generates the image it names it myapp-tomcat so it becomes ready

for deployment.

http://localhost:8080/myapp is created as the address to access the application.

https://www.ijlrp.com/
http://localhost:8080/myapp

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22051384 Volume 3, Issue 5, May 2022 4

e. Scaling and Orchestration with Kubernetes

Orchestration tools such as Kubernetes are needed to manage containers at large scales despite the

simple deployment process through Docker [9]. Kubernetes can allow developers to deploy containers

plus handle automatic scalability and management across different nodes. The case study utilized

Kubernetes to establish multiple Tomcat container instances to manage large-scale traffic. The following

Kubernetes deployment file was generated. The rationale is to manage the scaling of the Tomcat

containers.

IV. RESULTS AND BENEFITS

The containerizing of an Apache Tomcat application through Docker resulted in substantial outcomes

which affirmed enhancements of different aspects of software deployment. The main finding from using

Docker for containerization is the uniformity between various

operating environments. Moving applications between development, testing, and production has

traditionally grappled with varied configurations dependencies and platform setups [6]. Docker creates

self-contained application packages which include the required dependencies to operate. The Tomcat

application exhibited identical behavior across all targeted environments because the case study’s

approach solved the traditional "it works on my machine" limitations [10]. All developers, testers and

operations staff in the same environment can minimize errors due to variations resulting from dissimilar

testing environments [10]. The combination of Docker and Kubernetes proved crucial to orchestrate and

manage Tomcat container scaling. Kubernetes deployment allowed for the automatic horizontal scaling

such that application can handle fluctuations in requests without needing human interaction.

V. CONCLUSION

It is conceivable from this case that containerizing applications with Docker and Apache Tomcat create

an organized and efficient deployment of Java-based web applications. Docker's capabilities reduce

conflicts and environment inconsistencies, coupled with reliable Apache Tomcat platform for hosting

Java web apps. The case study illustrates that blending Docker with orchestration tools such as

Kubernetes can provide organizations with the ability to scale applications while managing dynamic

workloads and achieving operational flexibility.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22051384 Volume 3, Issue 5, May 2022 5

REFERENCES

[1] J. N. Acharya and A. C. Suthar, "Docker container orchestration management: A review," in

International Conference on Intelligent Vision and Computing, Cham: Springer International Publishing,

Oct. 2021, pp. 140-153.

[2] Y. A. Auliya, Y. Nurdinsyah, and D. A. Wulandari, "Performance comparison of docker and lxd

with apachebench," in Journal of Physics: Conference Series, vol. 1211, no. 1, p. 012042, Apr. 2019.

[3]Docker Documentation, Docker, 2022. [Online]. Available: https://docs.docker.com/. [Accessed: Jan.

30, 2022].

[4] C. Pahl, "Containerization and the PaaS Cloud," IEEE Cloud Computing, vol. 2, no. 3, pp. 24-31,

2015.

[5] M. Fowler and J. Lewis, "Microservices: A definition of this new architectural term,"

ThoughtWorks, 2014.

[6] T. Combe, A. Martin, and R. Di Pietro, "To docker or not to docker: A security perspective," IEEE

Cloud Computing, vol. 3, no. 5, pp. 54-62, 2016.

[7] Z. Lu, J. Xu, Y. Wu, T. Wang, and T. Huang, "An empirical case study on the temporary file smell in

dockerfiles," IEEE Access, vol. 7, pp. 63650-63659, Mar. 2019.

[8] V. R. Apolinario, Getting started with Windows Containers and Docker. Windows Containers for IT

Pros: Transitioning Existing Applications to Containers for On-premises, Cloud, or Hybrid, 2021, pp.

31-54.

[9] C. C. Chen, M. H. Hung, K. C. Lai, and Y. C. Lin, "Docker and Kubernetes," in Industry 4.1:

Intelligent Manufacturing with Zero Defects, Aug. 2021, pp. 169-213.

[10] S. Surovich and M. Boorshtein, Kubernetes and Docker-An Enterprise Guide: Effectively

containerize applications, integrate enterprise systems, and scale applications in your enterprise, Packt

Publishing Ltd, Nov. 2020.

https://www.ijlrp.com/
https://docs.docker.com/

