

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 1

Migrating Legacy Systems to Google Cloud

Platform's Serverless Architecture: Patterns and

Implementation Strategies

Prabu Arjunan

prabuarjunan@gmail.com

Senior Technical Marketing Engineer

Abstract

This research paper discusses the migration pattern, challenges, and implementation

methodologies for transitioning applications to the serverless computing infrastructure of Google

Cloud Platform. Different GCP serverless services, such as Cloud Functions, Cloud Run, and App

Engine, are discussed in the context of providing practical guidance on migration strategies and

architectural considerations for organizations. The paper discusses proven approaches to achieve

operational efficiency, cost optimization, and scalability while maintaining security and

performance during the migration process.

Keywords: Google Cloud Platform, Serverless Migration, Cloud Functions, Cloud Run, App

Engine, Microservices, Cloud Native, Application Modernization

1.Introduction

As discussed in [1], the rise of cloud computing has completely changed the way application

development and deployment paradigms are being carried out. Serverless offerings from Google Cloud

Platform represent the next big evolution in this space, providing multiple options for organizations to

run their applications without managing the underlying infrastructure. The serverless model comprises a

suite of services that handle scaling, availability, and resource management automatically, enabling

developers to focus purely on business logic.

2. Migration Assessment Framework

Research in [2] underlines that serverless migration is highly dependent on comprehensive application

assessment. The Google Cloud Architecture Framework has substantial guidance with respect to the

criteria for evaluation. Organizations have to analyze multiple critical dimensions driving the selection

of serverless service and approach for migration. The technological assessment to be considered should

include:

2.1 Runtime Environment Analysis

As shown in [3], the technical assessment first considers runtime environment compatibility across

various GCP serverless offerings. Research paper [6] presents empirical evidence on runtime

performance for various serverless services. Cloud Functions natively support multiple programming

https://www.ijlrp.com/
mailto:prabuarjunan@gmail.com

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 2

languages, such as Node.js, Python, Go, Java,.NET, and Ruby, making it suitable for various existing

applications. Cloud Run extends this further by supporting any language through containerization, thus

maximizing portability of existing applications. App Engine rounds out these options with both a

standard and a flexible environment, each providing different runtime constraints matched to application

needs.

2.2 Execution Pattern Evaluation

The organization needs to take a close look at the execution patterns to evaluate application migration

suitability, such as whether workloads are usually request-driven or event-driven, since these factors

affect service selection. Cloud Functions come with a 9-minute execution timeout, and this is an

important factor for long-running processes. Applications also have to be assessed for concurrency in

execution and for the sensitivity toward cold starts since these are important determining factors in

architectural decisions.

2.3 GCP Serverless Service Selection Framework

The framework suggested in [3], the selection of appropriate GCP serverless services, such as

characteristics that involve workloads and business requirements, a systematic evaluation. Below is a

sample implementation of this evaluation framework.

defassess_gcp_serverless_compatibility(application):

"""

 Evaluate application compatibility with GCP serverless services

 Returns weighted scores for each service option

 """

 scores = {

'cloud_functions': evaluate_functions_fit(application),

'cloud_run': evaluate_cloud_run_fit(application),

'app_engine': evaluate_app_engine_fit(application)

 }

returngenerate_recommendation(scores)

defevaluate_functions_fit(application):

 criteria = {

'execution_time': application.max_execution_time<=540, # 9 minutes

'runtime_support': application.runtimein SUPPORTED_RUNTIMES,

'event_driven': application.is_event_driven,

'resource_requirements': application.resource_requirements<= MAX_FUNCTION_RESOURCES

 }

returncalculate_score(criteria)

3. Migration Strategy and Architecture

3.1 Architectural Layers

According to the GCP architecture framework and described in detail in [4], The GCP serverless

architecture implementation consists of four main cooperating layers to provide an end-to-end solution.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 3

Figure 1 depicts a high-level view of the reference architecture of the major components involved in the

GCP serverless ecosystem and their interaction.

Figure 1: GCP Serverless Migration Reference Architecture

The reference architecture shown in Figure 1 demonstrates the layered approach to serverless

implementation on GCP, with each layer serving specific purposes: The client layer, which is an entry

point; Cloud Load Balancing to distribute traffic combined with API Gateway for advanced API

management and security controls; and Identity-Aware Proxy to introduce robust authentication

mechanisms, ensuring access to serverless resources is secure.

• This provides an entry for workload with an integrated Cloud Load Balancing functionality to divide

the incoming traffic. API Gateway provides advanced capabilities, API management, and security

controls, while IAP creates robust authentication to make sure of secure access to serverless

resources.

• Research [6] presents Cloud Functions and Cloud Run for handling different workload patterns with

great efficiency. At the heart of the architecture is the compute layer, which consists of Cloud

Functions for event-driven workloads efficiently. It provides highly flexible container management

with Cloud Run and App Engine for complex web applications requiring additional runtime features.

• The architecture uses a combination of services for data management, including Firestore/Datastore

for NoSQL needs, Cloud Storage for object storage, and Cloud SQL for traditional relational

database workloads. This will ensure that data is handled optimally based on the specific needs of

the application.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 4

• This layer enables the smooth interaction of components through Cloud Pub/Sub for messaging,

Cloud Tasks for scheduled operations, and Workflows for complex process orchestration.

4. Security Implementation

As shown in Figure 1, the security layer integrates closely with both the client and compute layers,

implementing IAM, VPC Service Controls, and Security Command Center. Following Google Cloud's

security best practices [5] and architectural guidelines, the security implementation for GCP serverless

architectures requires,

4.1 Service Authentication and Authorization

The security implementation for GCP serverless architectures requires a comprehensive approach to

authentication and authorization. The framework begins with Identity-Aware Proxy configuration, which

manages OAuth2 client credentials and enforces access controls at the application entry point. Service

accounts are configured with precise role definitions, following the principle of least privilege. For

example, Cloud Functions are assigned specific invoker roles, while data access is controlled through

granular datastore user permissions.

4.2 Network Security Configuration

Network security is implemented through VPC connectors, enabling serverless resources to securely

interact with VPC networks. The configuration establishes dedicated subnets for serverless services,

typically using CIDR ranges like 10.8.0.0/28, ensuring isolated and controlled network access. This

setup enables secure communication between serverless components and existing VPC resources while

maintaining network security boundaries.

5. Migration Patterns and Best Practices

5.1 Strangler Fig Pattern Implementation

The Strangler Fig Pattern represents a basic strategy for migrating a legacy system. This pattern will

enable progressive migration of the functionality to serverless services without compromising system

stability. It begins with the identification of discrete components that can be migrated independently.

Cloud Load Balancing facilitates traffic routing between the legacy and new serverless components, thus

enabling gradual cutover with no disruption to service. This minimizes risk and allows validation of the

migrated components in production.

5.2 Event-Driven Architecture Transformation

The event-driven architecture transformation makes use of the integration layer components represented

in Figure 1, where Cloud Pub/Sub serves as the central message broker.This architectural shift enables

loose coupling of services and allows for asynchronous processing patterns. Cloud Functions act as

event handlers, processing messages and executing business logics based on events that occur in the

system. This pattern is particularly effective for modernizing monolithic applications because it naturally

decomposes complex workflows into manageable, independent functions.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 5

5.3 Container Adoption Strategy

As indicated by research conducted in [1], for applications that require more control over the runtime

environment, the container adoption pattern provides a structured approach to modernization.

Applications are containerized and then deployed on Cloud Run, maintaining consistency across

environments but benefiting from serverless scaling and management. This approach is effective for

applications that have particular runtime dependencies or for which gradual modernization approaches

are necessary.

6. Common Challenges and Solutions

6.1 Performance Optimization Strategies

As discussed in [2] identify some of the key areas for performance optimization in serverless

architectures, which is supported in work mentioned in scientific workflow executions [6]. Referring to

Figure 1's monitoring layer, Cloud Monitoring and Cloud Trace provide comprehensive observability for

performance optimization. Performance optimization in serverless architectures focuses on several key

areas. Functions will have strategic initialization and resource allocation, such as avoiding cold start

latency, which is a very well-known challenge related to serverless environments. Simultaneously, cloud

CDN integration can facilitate enhanced content delivery of low latency for static content. Continuous

profiling will be allowed while monitoring the current settings for memory and concurrency are changed

in correspondence to workload patterns.

6.2 Cost Management Framework

[5] presents that, in effective cost management of serverless architecture, resources should be utilized in

a very structured manner. Autoscale policies are set up based on actual demand patterns, which prevent

over-provisioning and simultaneously ensure performance. Controls on concurrency in Cloud Functions

help manage parallel execution costs, while comprehensive monitoring enables the ongoing optimization

of resource consumption patterns. Organizations put in place sophisticated monitoring systems that track

both technical metrics and business KPIs to ensure cost-effective operations.

7. Conclusion

Several studies in [1,2,3,6] and industry frameworks have evidenced that the migration to GCP

serverless architecture marks a huge transformation in strategy regarding the deployment and

management of applications. Successful execution requires consideration of architecture patterns,

implementation of security controls, and operational excellence through monitoring and optimization.

Indeed, structured approaches for migration, proper implementation of security controls, and continuous

monitoring and optimization ensure maximum benefits related to serverless adoption. The richness of

the service offerings in the platform, if rivaled with proper implementation practices, enables

organizations to create scalable, cost-effective, maintainable applications.

8. References

[1] P. Castro et al., "The Rise of Serverless Computing," Communications of the ACM, vol. 62, no. 12,

pp. 44-54, 2019. DOI: https://doi.org/10.1145/3368454

https://www.ijlrp.com/
https://doi.org/10.1145/3368454

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP22111164 Volume 3, Issue 11, November 2022 6

[2] W. Lloyd et al., "Serverless Computing: An Investigation of Factors Influencing Microservice

Performance," IEEE International Conference on Cloud Engineering (IC2E), 2018, pp. 159-169. DOI:

https://doi.org/10.1109/IC2E.2018.00039

[3] S. Eismann et al., "Serverless Applications: Why, When, and How?," IEEE Software, vol. 38, no. 1,

pp. 32-39, Jan.-Feb. 2021. DOI: 10.1109/MS.2020.3023302

[4] E. Jonas et al., "Cloud Programming Simplified: A Berkeley View on Serverless Computing,"

arXiv:1902.03383, Feb. 2019. [Online]. Available: https://arxiv.org/abs/1902.03383

[5] Google Cloud Platform, "Serverless Computing," Developer Documentation, 2021. [Online].

Available: https://cloud.google.com/serverless

[6] M. Malawski, "Serverless Execution of Scientific Workflows: Cloud Functions and Cloud Run,"

Future Generation Computer Systems, vol. 105, pp. 455-466, 2020.

https://www.ijlrp.com/
https://doi.org/10.1109/IC2E.2018.00039
https://arxiv.org/abs/1902.03383
https://cloud.google.com/serverless

