

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

Application of Magneto-Rheological Fluid in Bearings

Sardar Paramjotsingh¹, Krunal Patel²

^{1, 2}Faculty of Technology & Engineering Charotar University of Science and Technology, Changa ^{1, 2}C. M. Department of Mechanical Engineering Chandubhai S Patel Institute of Technology

Abstract

Bearings are vital mechanical devices that support rotating elements and come in various shapes and sizes. To enhance their performance, modern lubrication methods using MR fluids and a permanent magnet for consistent magnetic fields are proposed. This approach aims to reduce friction, increase efficiency, extend lifespan, and ensure pressure-tight operation. However, the design currently struggles with high radial loads. Further research is needed to explore different carrier fluids, suspended particles, and magnetic material interactions. If perfected, this new method could significantly improve modern machine tools, although additional efforts are required for industrial applications.

I: BEARING

1.1 Bearing

Bearings are essential machine components that restrict motion to desired paths while reducing friction between moving parts. They enable smooth movement in vehicles, household appliances, and industrial machinery by minimizing wear and tear and facilitating efficient performance. Bearings are classified based on their operational function, permissible movements, and load directions. They play a pivotal role in automobiles, machinery, and even satellites, ensuring stability and energy efficiency despite operating in harsh, unseen environments. Their silent, robust functionality is indispensable for maintaining high performance across various applications.

1.2 Classification of Bearing

- a. According to direction of load
 - i. Radial Bearing
 - ii. Thrust Bearing
- b. According to type of contact
 - i. Sliding contact bearing
 - ii. Rolling contact bearing

1.3 Ball Bearing

Rolling bearings consist of an outer ring, inner ring, rolling elements (balls or rollers), and a cage to hold the rolling elements in place. This simple structure allows for smooth rotational movement.

1.4 Types of ball bearing

- 1.4.1. Deep Grove ball bearing
- 1.4.2. Angular contact thrust ball bearing
- 1.4.3. Thrust Ball bearing
- 1.4.4. Self-aligning roller bearing
- 1.4.5. Cylindrical rolling bearing
- 1.4.6. Cylindrical roller bearing
- 1.4.7. Tapered roller bearing
- 1.4.8. Thrust needle bearing
- 1.4.9. Cage and Roller

1.5 Limitations

As a result, journal bearings have a high load capacity, and the root cause of high friction is known. And although roller bearings are built on the sliding principle and carry less load than the journal equivalent of identical size, tolerances are much lower. While high load, high-speed bearings are expensive, the following high-RPM operation occasionally boosts maintenance costs. Furthermore, they need sophisticated tools for precision installation. High-precision purpose-built bearings are less versatile.

II: SMART FLUIDS

2.1 INTRODUCTION TO FIELD SENSITIVE FLUIDS:

Smart materials possess properties that can be adjusted through external fields, like ferro-electricity, pyro-electricity, piezoelectricity, and more. These materials are usually solid, such as polycrystalline forms, bulk materials, or thin films on substrates. Additionally, there are 'field responsive fluids such as magneto-rheological fluids, ferrofluids, electro-rheological fluids, and certain polymeric gels, which respond to external fields.

2.2 MAGNETO RHEOLOGICAL FLUIDS:

MR fluids are dispersions of ferromagnetic or ferrimagnetic particles in an organic or aqueous carrier, commonly using high purity iron powder. In their 'off' state, they resemble liquid paints with low viscosity. When exposed to a magnetic field, the particles become magnetized, align, and form structures that significantly increase yield stress, which can reach up to 100 kPa. The response time of MR fluids is around 10-20 milliseconds. MR fluids are reversible and find applications in active vibration control,

automotive dampers, and torque transfer. Their properties are influenced by composition, magnetic field strength, and the design of the magnetic circuit.

2.3 APPLICATION IN DAMPING

MRF dampers can adjust their damping in real-time based on external vibrations, making them valuable in engineering. They work by generating a magnetic field through a coil, which acts on the magneto-rheological fluid in circular damp channels, causing the piston to move and change the fluid's motion characteristics. This adjustment alters the pressure difference between chambers, controlling the damping force. Universities like Maryland and Nevada have developed various MRF dampers for different applications, such as artillery recoil devices and automotive shock absorbers. These designs include double-piston, double-rod shear valve, and rotary shear MR dampers.

2.4 APPLICATION IN TRANSMISSION

Magneto-rheological (MR) transmission technology, developed in the 1990s, uses the rheological effect of MR fluids as the transmission medium. A magnetic field, generated by a coil, adjusts the fluid's shear yield stress, thereby changing the transmission torque and force. Researchers have extensively studied MR fluid transmission devices, such as the cylindrical actuator by Chongqing University and the small power actuator by China University of Mining Technology. Applications include automotive MR brakes designed by Northeast Forestry University, which meet the braking torque needs of small cars.

2.5 APPLICATION IN OTHER FIELDS

MRF Sealing Device

Kordonsky's experiments on single-stage sealing with magneto-rheological fluid (MRF) show that adjusting MRF viscosity in the sealing gap provides effective sealing, with benefits like simple structure and minimal maintenance. Fujita further analyzed how particle size, shape, and carrier liquid viscosity affects torque and pressure. Li Jingsong's team developed a low-friction, long-lasting MRF seal ring. MRF Composite Component

In mechanical systems, MRF can be used in composite components like plates, discs, and beams to adjust stiffness and damping by altering shear and compression/tensile modulus. Weiss and Carlson have patented several MRF composite components for vibration control and other applications.

MRF Flexible Fixture

MRF flexible fixtures are designed to handle small or irregularly shaped parts during manufacturing. Tang's research demonstrated that MRF's rapid phase transition and high yield strength help improve accuracy and reduce processing time.

III:CONCEPT OF MAGNETORHEOLOGICAL FLUID BEARING

3.1 CONCEPT DESCRIPTION

This research aims to create a bearing with no solid contact between moving parts to reduce frictional losses. It uses a magnetic field to suspend a magnetizable shaft, with MR fluid that behaves like a solid with high shear strength when magnetized, supporting axial or radial loads. A magnetic flux loop, formed by magnetizable collars and a permanent magnet, aligns MR particles in the gap, providing the necessary load capacity. The Ferro particles are micrometer-sized for optimal performance.

3.2 Material Selection

The selection of materials is crucial for the proper functioning of the bearing. The key components include:

- Magnet: Neodymium magnets (NdFeB 40) are chosen for their strong magnetic field to hold Ferro particles.
- Collar material: 1006 steel is used for collars due to its magnetizability and ability to support heavy radial loads.
- Housing material: Either 304 stainless steel or 1006 aluminum alloy, both non-magnetizable, are suitable for their strength and cost-effectiveness.
- Shaft material: 1006 steel is selected for its high magnetizability and mechanical strength to transmit torque during testing.

In essence, each material is chosen for its specific properties to ensure the bearing performs efficiently.

IV: SIMULTATION AND RESULTS

4.1 SIMULATION

The FEMM simulations were vital in refining the physical dimensions of the bearing components from conceptual design to the actual prototype. After finalizing the concept, several iterations of FEMM simulations helped identify patterns to achieve the final dimensions.

1. Magnet Dimensions: The initial focus was on finding the relationship between different dimensions of identical material magnets, leading to finalized dimensions and simplified further simulations.

2. Collar Thickness: The thickness of magnetizable collars was adjusted to ensure maximum flux development at the gap where MR fluid would be filled.

3. Housing and Shaft Assembly: With the major components ready, the housing and shaft were designed for easy assembly and manufacturing, including a housing design with 4 M6 bolts for stability during operation.

In essence, the iterative FEMM simulations played a crucial role in determining the final dimensions and ensuring the effective assembly and operation of the bearing.

To analyze the flux line behavior in a system, the FEMM analysis setup involves specifying materials and varying dimensions to observe patterns. The process starts with creating a 2-D representation of a 3-D axis-symmetrical problem, selecting material properties from the software's library, and meshing the setup to the required density. Once meshing is complete, the software calculates the effects of the dimensions on flux line behavior, providing values for flux density, field intensity, and current density along the flux lines' distribution.

4.2 SIMULATION RESULTS

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

V: MANUFACTURING

5.1 CAD DRAWINGS

The final design dimensions were mechanically and structurally robust, making them ready for manufacturing, with detailed CAD drawings prepared for each part and the assembly which are as below:

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

5.2 Manufactured Parts

The CAD drawings facilitated the manufacturing of parts with high accuracy, aligning with the proposed design. While most parts, such as housing, lids, and collar faces, were made on a center lathe, the boring of the collar and shaft turning were executed on a CNC lathe. This ensured an extremely smooth finish with tight tolerances, creating a small gap to build up sufficient field intensity for generating a thin, strong lubricant film around the shaft.

VI: TESTING PROCEDURE

The testing phase is crucial for validating the research efforts and evaluating the performance of the proposed all-purpose anti-friction bearing design. The prototype was tested by mounting it on a spindle

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

delivering a constant 240 rpm for 16 minutes. The presence of friction was assessed by examining surface scratches or signs of wear on the shaft and collars. Surface roughness plots were taken to distinguish machining scratches from friction scratches. Results indicated that the MR fluid effectively reduces friction, as evidenced by smooth shaft rotation and low noise levels, suggesting proper shaft support by the fluid film. However, under radial loading, the fluid's compressive strength was insufficient, resulting in surface scratches due to the lack of viscous strength and homogeneous carrier fluid. This highlights the limitations of the MR fluid in certain conditions.

FIG 6.1: TESTING

VII: CONCLUSION

The results highlight the effectiveness of MR fluid in reducing friction at interacting surfaces but also reveal its inability to withstand radial forces due to insufficient viscous shearing and compressive rigidity. While research has well-documented the relationship between field intensity and yield strength, the link between compressive strength and field intensity is more complex. To develop an all-purpose bearing, further research is needed to vary the properties of MR fluid constituents, focusing on particle size and carrier fluid viscosity. Successful samples should undergo extensive testing to create a comprehensive catalog, aiding in the selection of the appropriate fluid for specific applications.

REFERENCE

- 1. Leszek Matuszewski, Zbigniew Szydio, The application of Magnetic Fluids in sealing nodes designed for operation in difficult condition and in machines used in seas, Polish Maritime research-January 2008.
- 2. Keswani Sunil, Aum Thacker, Performance analysis and comparison of journal bearings using ferro fluid and magnetorheological fluid by Computational Fluid Dynamics, IJSRD-2014.
- 3. Dr. Pradeep P Phule, Magnetorheological Fluids: Principles and applications, smart materials bulletin-2001.
- 4. Mr. S. R. Hule, study of the hydrodynamic bearing materials and properties, IJARIIE-2016.
- 5. Luo Yiping, Xu Biao, Ren Hongium Summarizaton of Magnetorheological Fluid and its Applications in Engineering. American Journal of Mechanics and Applications. Vol 2, No.1, pp.1-5: doi: 11648/j.ajma.20140201.11
- 6. Synthesis and Characterization of Antifriction Magnetorheological Fluids for Brake by Chintranjit Sarkar and Harish Hirani.
- 7. Wear Testing of Seals in Magneto Rheological fluids by VARDARA JAN R. IYENGAR , ALEXANDER A. ALEXANDRIDIS , SIMON C. TUNG & DAVID S.RULE

- 8. Luo Yiping, Xu Biao, Ren Hongjuan, Chen Fuzhi. Design of Magnetorheological Fluid Dynamometer which Electric Current and Resisting Moment have Corresponding Relationship. *Automation, Control and Intelligent Systems.* Vol. 2, No. 2, 2014, pp. 16-20. doi: 10.11648/j.acis.20140202.11
- 9. A Magnetorheological Fluid Based Design of Variable Valve Timing System for Internal Combustion Engine using Axiomatic Design, S. M. Muzakkir and Harish Hirani, nternational Journal of Current Engineering and Technology, Vol.5, No.2 (April 2015).
- 10. V. B. Bhandari , Design of Machine Elements, third edition, Mc GrawHill-2011

Grade	N42	
Residual Induction Br	12.8-13.2 (1280-1320)	KC (mT)
Coercive Force Hob	11.5 (915)	kOe(K&/m)
Intrinsic Coercive Force Hci	12.0 (955)	kOe(KA/m)
Energy Product DHmax	40-43 (318-342)	MGO(KU/m3
Max. Operating Temp.	00	*C

APPENDEX

Material Selection Table

PERMANENT MAGNETS:

- 1. Alnico magnets
- 2. NdFeB magnets
- 3. Ceramic magnets
- 4. SmCo magnets

MAGNETISABLE MATERIALS:

- 1. 1006 Steel 8. 455 Stainless Steels
- 2. 1010 steel 9. M-15 Steel
- 3. 1018 steel 10. M-19 Steel
- 4. 1020 steel 11. M-22 Steel
- 5. 1117 steel 12. M-27 Steel
- 6. 416 Stainless steels 13. M-43 Steel
- 7. 430 Stainless steels 14. M-47 Steel

NON-MAGNETISABLE MATERIALS:

1. titanium

4. copper

- 2. 316 Stainless Steel
- 3. 304 Stainless Steel
- 5. Aluminum 6061-T6
- 6. Aluminum 1100

Surface Texture Measurement Result

litle		Created	Date/Time	2/16/2018 12:43:18 PM	Revision No.	0	
Subtitle		Revised	Date/Time	2/16/2018 12:44:50 PM	Date/Time start	2/16/2018 12:44:02 PM	
Created By	Administrator	Revises	i By	Administrator	Date/Time end	2/16/2018 12:44:50 PM	
leasurement (Condition						
nstrument		SV-2100	Z1-axis Ran	ge	800.0um	Straightness Compensation(X-axis)) Nan
Meas. Length(X)	48.0000mm	Sampling N	ethod	X-axis Pitch	Stylus Radius Compensation	Non
Meas. Pitch		0.0050mm	Z Gain Adj.	Ratio	1.132559	Polar Reversal	Non
Measuring Spe	bed	1.00mm/sec	Symmetric	Compensation	Nan		
Inne Don & C.	an Data X Mart v2	7 Marc v2 -Conte	10				
idas Hesul G	oo Dala Amag. AL	E mag. AL COOM	<i>he ></i>				
[um]							
0000							
0000							
5000							
			0 14				
			SunAr	lalysis_1			
0					-1		
-5000							
0000							
					6 3		
5	10 15	20 25	20	25 40 45	50 [mm]		
		EV 20		40 40	30		

Surface Texture Measurement Result

Calculation Result									
Meas Cont Meas Value	Meas Cont	Meas Value	Meas Cont	Meas Value	Meas Co	ont. Meas V.	alue	Meas Cont	Meas Value
Roughness 2D-SurfAnalysis_1>	Ry .	16.1957um	R13	17.3723um	R	20.962	fum		
Profile=R - Section=[1]	Rt	12.6269um	RM	20.1514um	Rt	12.678	Jum		
Ra 2.2163um	R2	15.7066um	R6	15.1215um	da	5.8152de	ree		
Profile=R - Section=[1] X Mag: x2	Z Mag: x2000 <	SurfAnalysis 1>		Parameter Sun	mmary Sheet				
[um]				ParameterPre	ofile=R - Se	ction=[1Aver	age Value	r	
				Ra (um)		2.2163	2.2163		
				Ry (um)	1	6.1957	16.1957		
5	6.4			Rt1 (um)	1	2.6269	12.6269		
المراقل المراقل المراقل	litter for the state	a i faitin	11.46	Rt2 (um)	1	5.7066	15.7066		
بالالالالال بالالال بعلا	NL (11) & 4	سالا الارال فنغ	4148	Ptt3 (um)	1	7.3723	17.3723		
		والكان الم		Rt4 (um)	2	20.1514	20.1514		
	L 11			Pit5 (um)	1	5.1215	15.1215		
1. IN THE A	1.101.111	a i sa a sa		Rt (um)	2	10.9624	20.9624		
-5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 P. 1 . 1	1707-1017-001	109119-1-1	HZ (um)	1	2.6789	12.6789		
1 1 1 1 1 1 1	11 1	10, 11, 11, 11, 11, 11, 11, 11, 11, 11,	9911	da (degree)		5.8152	5.8152		
			1 T T T						
-10									
-16									
-13									
			in the						
0 5 10	15 20	25 30 3	35 40	·					

roperty							
Title		Creat	ed Date/Time	2/16/2018 12:45	5:53 PM Revision N	lo. 0	
Subtitle		Revis	ed Date/Time	2/16/2018 12:47	23 PM Date/Time:	start 2/16/2018 12:46:34 PM	
Created By	Administrator	Revis	ed By	Administrator	Date/Time	end 2/16/2018 12:47:22 PM	
Measurement Condi	tion						
Instrument		SV-2100	Z1-axis Ra	inge	800.0un	n Straightness Compensation	(X-axis) Non
Meas. Length(X)		48.0000mm	Sampling	Method	X-axis Pi	tch Stylus Radius Compensatio	vn Nan
Meas. Pitch		0.0050mm	Z Gain Ad	. Ratio	1.132559	Polar Reversal	Non
Measuring Speed		1.00mm/se	c Symmetric	Compensation	Non		
Anne Rose it Goo De	A Man x2	7 Man: v2 -Co	tours				
vieas nesul Geo Da	BE A WORLAG	L may. AL YOU	100012				
[um]							
10000							
5000							
			_				
			SurfA	nalysis 1	1		
0 4					7		
-5000							
0000							
10000							
					(m	m	

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Surface Texture Measurement Result

Meas Cort Meas Value Meas Cort Meas Value P3 52566 P2 13.3164um P2 13.3164um P6 13.3160 P2 13.3164um P6 13.3160 P3 12.5560 P3 12.5560 P4 13.3164 P6 13.3160 P4 13.3160 P4 13.3164 P4 14.3164 P4	Calculation Result	T		1		1	1
Parameter Sectors 11 XMgr x2 ZMgr x2000 «SurfAvelysis 1.5 Parameter Sectors 2.5 Sectors 1.1 Kevrage Value Ra (um) 2.2007 2.2007 Ra (um) 2.2007 Ra (um) 2.2007 Ra (um) 2.2008 Ra (u	Meas Cont Meas Value Roughness 2D <surfanalysis_1> Profile=R - Section=[1] Ra 2.2067um</surfanalysis_1>	Ry Rt Rt Rt	13.9289um 17.1730um 13.3164um	RIS RIS RIS RIS	nt Meas Value 12.5566um 13.2795um 13.3190um	Meas Cont Meas Value R 17.4990um Rz 12.0338um da 5.7835degree	Meas Cont Meas Value
	Potlika: Seedon-(1) XMag: 22 Imp 5 0 -5 -10 15 -10 -5 -10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 Mag: x2000 -			Parametor Sk Parametor P Ra (um) RY (um) Rt2 (um) Rt2 (um) Rt3 (um) Rt3 (um) Rt3 (um) Rt4 (um) Rt4 (um) Rt4 (um) Rt4 (um)	nmany/Sed rollie-A - Section-114/evrage V 2.2067 2.2 3.2029 13.9 1.3.2392 13.9 1.3.31304 17.3 1.2.5566 13.2 1.3.2195 12.2 1.3.2195 12.2 1.3.2196 74.4 12.0388 12.0 5.7835 5.7	alue Dorf 7376 7376 7376 7376 7375 7395 7395 7395 7395 7395 7395 7395

Surface Texture Measurement Result

Property									
Title			Created	Date/Time 3	2/16/2018 12:50:15 PM	Revision No.	0		
Subtitle			Revised	Date/Time	2/16/2018 12:52:22 PM	Date/Time start	2/16/2018 12:51:33 PM		
Created	By	Administrator	Revise	By i	Administrator	Date/Time end	2/16/2018 12:52:21 PM		
Measure	ment Cond	fition							
Instrume	int		SV-2100	Z1-axis Ran	ge	800.0um	Straightness Compensation	n(X-axis) Non	
Meas. L	ength(X)		48.0000mm	Sampling M	ethod	X-axis Pitch	Stylus Radius Compensation	on Non	
Meas. F	litch		0.0050mm	Z Gain Adj. I	Ratio	1.132559	Polar Reversal	Non	
Measuri	ng Speed		1.00mm/sec	Symmetric (Compensation	Non			
Meas Re (um)	esuit Geo D	ata X Mag: x2	Z Mag: x2 <cont< td=""><td>ou></td><td></td><td></td><td></td><td></td><td></td></cont<>	ou>					
10000									
5000									
0	k			SurfAr	alysis_1	_			
-5000									
10000									
	10	15 20	25 30	35	40 45 50	[mm] 55			

Meas Cont Meas Value	Meas Cont Meas Value	Meas Cont Meas Value	Meas Cont Meas Value	Meas Cont Meas Value
Roughness 2D <surfanalysis_1></surfanalysis_1>	Ry 20.7439um	R3 26.6937um	R 27.1900um	
Profile=R - Section=[1]	Rt1 14.0050um	RM 23.2974um	Rz 17.8351um	
Ra 2.8629um	R2 12.5334um	Rt5 27.1900um	da 7.8470degree	
Measured Profile X Mag: x2 Z Ma	o: x500 <surfanalysis 1=""></surfanalysis>			

Meas	Cont Meas Value	Maas Cont	Meas Value	Meas Cont	Meas Value	Meas Cont Meas	Value	Meas Cont	Moos Value
Boucho	pes 20-Surfánskeis 1-	B	20 7439um	B3	26 6937um	B 27.10	200um	mous oom	mous ruise
mfile_l	R - Section=[1]	BI	14.0050um	PM	23 2974um	B 17.8	851um		
Ra	2.8629um	RI2	12.5334um	RS	27.1900um	da 7,8470d	fegree		
-	Contro (4) X Mag. v2	7 Mag: x1000	QuidAnalurie 1-		Parameter Su	mman Shoot			
IUm]	1 - Section=[1] A mag. Az	2 May. X1000	Countriesysis_12		ParameterP	rofile=R - Section=[1Av	rerage Value		
and -					Ra (um)	2.8629	2.8629		
20					Ry (um)	20.7439	20.7439		
					Rt1 (um)	14.0050	14.0050		
					Rt2 (um)	12.5334	12.5334		
10		1.4		14.14	Rt3 (um)	26.6937	26.6937		
	4	A Lunio	L. Hill, in	site in the	Rt4 (um)	23.2974	23.2974		
0	التقارية التعاريل التراران		كالما الالاغ والت		Rt5 (um)	27.1900	27.1900		
Ŭ	a lot a dat via built		FALX 8.47	and the Val	Rt (um)	27.1900	27.1900		
	1 lakal	- the fills	8 NE 18 76 T	1. M. I.	Rz (um)	17.8351	17.8351		
-10	1. 1		1 11 11 11 11		da (degree)	7.8470	7.8470		
			1 11 11 11						
1000			2013 2						
-20									
20									
-30				Im					
	0 5 10	15 20	25 30	35 40	9				

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Surface Texture Measurement Result

Calculat	tion Result	82		5.0					
Mea Roughr Profile= Ra	s Cont Meas Value tess 2D <surfanalysis_1> R - Section=[1] 2.1214um</surfanalysis_1>	Meas Cont Ry Rt1 R2	Meas Value 13.6966um 13.1003um 14.0109um	Meas Cont R3 R4 R5	Meas Value 13.9431um 13.7959um 13.6329um	Meas Cont Meas Rt 14.75 Rz 12.21 da 6.2672c	Value 81um 14um legree	Meas Cont	Meas Value
Profile= [um] 10 5 -5 -10 -15		2 Mag: x2000 -			Parameter 32 Parameter Ra (um) Rt (um) Rt12 (um) Rt3 (um) Rt4 (um) Rt4 (um) Rt4 (um) da (degree) m]	mmarySheet crollev-R - Saction=[]A 2.1214 13.6866 13.1003 14.0109 13.9431 13.7059 13.6329 14.7981 12.22114 6.2072	erage Value 2.1214 13.6966 13.1003 14.0109 13.9431 13.7959 13.6329 14.7981 12.2114 6.2672		

Topony					
lite	Created Date/Time	2/16/2018 12:54:33 PM	Revision No.	0	
Subtitle	Revised Date/Time	2/16/2018 12:56:15 PM	Date/Time start	2/16/2018 12:55:27 PM	
Created By Administra	tor Revised By	Administrator	Date/Time end	2/16/2018 12:56:15 PM	
Aeasurement Condition					
nstrument	SV-2100 Z1-axis R	ange	800.0um	Straightness Compensation	(X-axis) Non
Meas. Length(X)	48.0000mm Sampling	Method	X-axis Pitch	Stylus Radius Compensatio	n Non
Meas. Pitch	0.0050mm Z Gain Ad	 Ratio 	1.132559	Polar Reversal	Non
Measuring Speed	1.00mm/sec Symmetri	c Compensation	Nan		
[um]					
10000					
5000			_		
0 K	SurfA	nalysis_1			
-5000					
0000					
25 30	35 40 45 50	55 60 65	[mm] 70		

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Surface Texture Measurement Result

Surface Texture Measurement Result

Property				
Title	Created Date/Time 2/16/2018 12:56:42 PM	Revision No.	0	
Subtitle	Revised Date/Time 2/16/2018 12:58:18 PM	Date/Time start	2/16/2018 12:57:29 PM	
Created By Administrator	Revised By Administrator	Date/Time end	2/16/2018 12:58:18 PM	
Measurement Condition				
Instrument SV-210	20 Z1-axis Range	800.0um	Straightness Compensation(X-axis)	Nbn
Meas. Length(X) 48.000	00mm Sampling Method	X-axis Pitch	Stylus Radius Compensation	Nan
Meas. Pitch 0.005	50mm Z Gain Adj. Ratio	1.132559	Polar Reversal	Nbn
Measuring Speed 1.00	Jmm/sec Symmetric Compensation	Non		
Meas Result Geo Data X Mag: x2 Z Mag: x	x2 <contour></contour>			
[um]				
10000				
5000				
3000				
	SurfAnalysis 1			
0 🖌)		
-5000				
10000				
		Immi		
5 10 15 20	0 25 30 35 40 45	50		

alcutation	h Hesult	1 11 0		1		1			
Meas (John Meas value	Meas C	ont Meas value	Meas Con	t Meas value	Meas Cont Meas	value	Meas Cont	Meas value
houghnes	S 2D <sunanaysis_1></sunanaysis_1>	Di	19.5345Um	nu Du	13.1751Um	D 16.00	95um		
Ra Ra	2 7472um	B2	12.8351um	85	29.2170um	da 7,4705d	logroo		
	O C IN XManu	71400.010	00 Cuddenhuin 1.	1.1	Demonster C.	mmen Cheat			
TONE-H -	Section+[1] A way, x2	Z IViag. X TU	00<3011Analysis_1>		ParameterP	rofile-B - Section-I1Av	erane Value		
lumi					Ba (um)	2.7472	2.7472		
20					By (um)	19.5345	19.5345		
_					Rt1 (um)	15.6000	15,6000		
10					Rt2 (um)	12.8351	12.8351		
10				1993	Rt3 (um)	13.1751	13.1751		
	black and with starte		ر و الالتفاقيم. به	a a fall at	Rt4 (um)	26.8450	26.8450		
0	ويهتي البليدانية إرباله				Rt5 (um)	29.2170	29.2170		
	a ha had a had a had a	del La ma	איי האיזה מיתהי		Rt (um)	33.3295	33.3295		
	and the second will	de talte.	ALC: NO DESCRIPTION		Rz (um)	16.2968	16.2968		
-10	,		- P P		da (degree)	7.4705	7.4705		
-20									
-20									
-30									
					nm				
0	5 10	15 20	25 30	35 40	1000				

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Mea: Roughn Profile= Ra	s Cont ess 2D R - Sec	Meas <surfar tion=[1] 2.19</surfar 	Value alysis_1> 105um	Ry Rt Rt Rt	as Cont	Meas 14.40 15.00 12.91	Value 107um 177um 109um	R	Meas Con 3 4 5	t Meas Value 12.3938um 14.1016um 17.5896um	Mea R Rz da	s Cont Meas 17.60 12.70 6.1075d	Value 12um 35um legree	Meas Cont Meas Value
10 5 -5 -10	- Sed		x Mag: x	2 Z Mag	: ×2000 ·	SurtAnz			Ŵ	Parameter S Parameter B Ra (um) Rt (um) Rt2 (um) Rt3 (um) Rt3 (um) Rt5 (um) Rt (um) Rt (um) Rt (um)	ummary S Profile=R	neet Section=[1][Av 2.1905 14.4007 15.0077 12.9109 12.3938 14.1016 17.5896 17.6012 12.7035 6.1075	erage Value 2,1905 14,4007 15,0077 12,9109 12,3938 14,1018 17,5896 17,6012 12,7035 6,1075	
L	0	5	10	15	20	25	30	35	40	mj				